The interplay between metalanguage, feedback, and meaning negotiation in oral interaction

Laia Canals, Universitat Oberta de Catalunya

Abstract

The present article explores the affordances virtual exchanges provide to foster a focus on form, interactional feedback, and meaning negotiation in language related episodes (LREs) occurring in interaction between learners of English and learners of Spanish as a foreign language. The participants, 36 students enrolled in language courses at two universities in two different countries, took part in a virtual exchange which involved carrying out three 40-minute video calls in pairs. These calls were video recorded and constituted the data from which different types of LREs were extracted. The recordings from the first and the last video calls, which took place two and a half months apart, were transcribed and analyzed. Data analyses revealed that learners gave significantly more feedback during the last interactive task, and that only in the case of LREs initiated by L2 speakers did this lead to more repairs and a higher resolution rate of the episodes. The data also showed that the presence of metalinguistic information led to an increased number of repairs, and that reactive LREs initiated by L1 speakers and preemptive LREs initiated by L2 speakers displayed different rates of interactional feedback, meaning negotiation, modified output, and repairs.

Keywords: Interactional Feedback, Meaning Negotiation, Language Related Episodes, Metalanguage

Language(s) Learned in This Study: English, Spanish

APA Citation: Canals, L. (2022). The interplay between metalanguage, feedback, and meaning negotiation in oral interaction. Language Learning & Technology, 26(1), 1–24. https://hdl.handle.net/10125/73486

Introduction

In an increasingly virtually connected world, learner to learner eTandem virtual exchanges (VEs) (O’Rourke, 2007; Tian & Wang, 2010) are a common means for institutions, teachers, and researchers to collaborate by building pedagogically sound projects to foster learners’ linguistic and intercultural skills (Guth & Helm, 2010). In terms of L2 development, it is important to understand the affordances offered by VEs, particularly at a time when face-to-face exchanges are not always possible. VEs can provide a means to compensate for a lack of face-to-face class time and diminished opportunities for learners to interact with their teachers, L1 speakers, and/or other L2 learners. It is also crucial to determine the benefits in terms of the linguistic gains VEs can promote as well as the possible oral skills and interactional abilities they may foster.

VEs themselves can take several shapes and forms, and have been investigated from different perspectives (for an overview, see O’Dowd, 2018). Most VEs combine synchronous and asynchronous activities in which learners collaborate in groups or pairs to achieve specific goals. Learners use computer-mediated communication (CMC) to communicate with other learners and carry out group and individual activities. This is accomplished using different tools, sometimes engaging in synchronous computer-mediated communication (SCMC) using video or audio calls which is the focus and interest of the current article. This article examines learner-to-learner interactions in a virtual exchange to determine the potential of these
exchanges to provide opportunities for learners to focus on form and engage in meaning negotiation.

Interactional Feedback and Negotiation of Meaning in SCMC

Interactions between teachers and learners or between learners themselves have been established as playing an important role in second language acquisition (Long, 1983). They enable learners to negotiate the meaning of linguistic input to make it comprehensible for themselves and their interlocutors while also allowing learners to notice aspects of the target language and produce modified output (Long, 1996). These phenomena have been observed in several settings including laboratory and classroom-based contexts, and, more recently, technology-enhanced language learning environments (Bueno-Alastuey, 2013; Yanguas, 2010, 2012; Yilmaz & Granena, 2010; Ziegler & Phung, 2019). However, as Akiyama (2014) points out, there is a need to examine focus on form in video SCMC and VE settings, an area which remains under-researched (Bueno-Alastuey, 2013; Loewen & Sato, 2018; Ziegler & Phung, 2019).

One of the ways in which focus on form has been measured is by identifying language related episodes (LREs). These episodes constitute moments when learners choose to interrupt the flow of conversation to examine a linguistic aspect of their own or their interlocutor’s utterance as part of communication breakdowns (Kenning, 2010; Varonis & Gass, 1985) or negotiation of meaning occurring during interaction (Ellis et al., 2001; Foster & Ohta, 2005; Swain & Lapkin, 1998; Yilmaz & Granena, 2010). According to Gass and Mackey (2007), LREs comprise discourse moves such as negotiation sequences, and explicit and implicit feedback. These episodes may have lexical, phonetic, or morphosyntactic triggers (Leeser, 2004) or stem from a global misunderstanding (Bueno-Alastuey, 2013; Yanguas, 2010). Lexically-triggered LREs are the most frequent (Ellis et al., 2001; Yang & Lyster, 2010; Yanguas & Bergin, 2018) because they carry meaning, and they are more noticeable and more prone to misunderstanding than morphosyntactic LREs.

The difference between preemptive LREs (PLREs), initiated by L2 learners, and reactive LREs (RLREs), in which the L1 speaker or the teacher initiates the focus on form episode, has received much less attention. Ellis et al. (2001) pointed out that most studies have focused on RLREs, with PLREs receiving much less attention despite being as common (Akiyama, 2014; Ellis, et al., 2001; Ellis, 2012; Nassaji, 2013). The present study will focus on the differences between how PLREs and RLREs afford opportunities for successful focus on form and meaning negotiation.

Focus on form and negotiation of meaning using interactional feedback have been approached in SCMC (Loewen & Isbell, 2017; Parlak & Ziegler, 2017), laboratory, and classroom settings, concentrating on different aspects. Several studies have examined the effect of participant pairing types on interaction and have found mostly benefits when pairing up first language (L1) and second language (L2) speakers or L2 speakers with different L1s amongst themselves (Bueno-Alastuey, 2013; Mackey et al., 2003) and/or at different proficiency levels (Leeser, 2004; Nassaji, 2013; Sato & Viveros, 2016). Other research has examined interactions between pre or in-service teachers and learners (McDonough & González, 2013; Nassaji, 2013) or compared learners in different age groups (Mackey et al., 2003; Oliver & Mackey, 2003; Oliver et al., 2017), mostly establishing that adults and children both benefit from interactional focus on form, but in different ways, diminishing the importance of age as a variable (Mackey et al., 2003).

Several studies have examined the impact of task characteristics on interactional behavior according to the type (conditions), complexity, and structure of the task (Gilabert et al., 2009; Loewen & Isbell, 2017; Nassaji, 2013; Swain & Lapkin, 2001; Yanguas & Bergin, 2018; Yilmaz & Granena, 2010). Different tasks require learners to exchange information in different ways and thus promote different types of learner interactions. Two-way tasks, such as the ones used in the current study, require learners to share information with one another, and tasks where learners need to agree with a specific outcome (convergent tasks) result in more negotiation of meaning than opinion (divergent) tasks in which learners just need to exchange opinions (Gilabert et al., 2009). Other research has focused on the differences between the modalities of the interaction itself in different settings such as face-to-face versus SCMC, CMC (Lai & Zhao, 2006; Yanguas, 2010, 2012), or several combinations of multimodal features of the medium in which interactions
were carried out, including text chat (Lai & Zhao, 2006), video and audio (Yanguas, 2010; Yanguas & Bergin, 2018), oral and written SCMC (Loewen & Wolff, 2016), audio, video, text and multimodal chat (Ziegler & Phung, 2019), and video SCMC as well as multimodal videoconference features (Akiyama, 2014). While Ziegler’s (2016) meta-analysis indicates slightly higher benefits for tasks carried out using SCMC over face-to-face, subsequent studies pointed to the need to take SCMC multimodal features into account when comparing interaction modalities (Canals, 2021; Saito & Akiyama, 2017; Ziegler & Phung, 2019).

Metalanguage in Research on Oral Interaction

Research on the role of metalanguage—the language used to talk about language or explain the rules of the language—in oral interaction is very scarce, even though metalanguage is believed to play an important role in focusing attention and helping students to notice and respond to scaffolding by informing on choices of words to use in modified output (Fortune, 2005). Therefore, metalanguage has the potential to aid learners in repairing their utterances and possibly contributing to successfully resolving LREs. Basturkmen et al. (2002) examined the two main methodological options for form-focused instruction (preemptive and reactive), discussing the benefits of each and the variations they offer in communicative tasks. The authors suggested distinguishing between conversational and didactical, explicit and implicit, and student-initiated and teacher-initiated focus on form; they indicated that metalinguistic information is often found in LREs as part of explicit feedback, in the shape of explanations about a linguistic item. Fortune (2005) examined English as a second language (EFL) students use of three types of metalanguage while taking part in a collaborative writing form-focused task. The results of the study indicated that advanced EFL learners used metalanguage in grammatical and lexical LREs at higher rates than intermediate learners and concluded that metalanguage facilitated attention focus, helping learners to decide which form to use and re-engage with the linguistic items. Storch (2008) explored the use of metatalk in EFL learners when conducting a reconstruction task, in dyads and individually. She found benefits for learning and consolidation of linguistic knowledge when the reconstruction task was done in pairs and concluded that sustained metalinguistic discussions facilitate L2 learning. Ellis (2016) provided an overview of the use of metalanguage in language instruction and discussed the affordances offered by metalanguage from the perspective of the learner, task type, and language learning goals. The pedagogical implications the author drew from earlier research point to several benefits of metalanguage, such as increased learner autonomy. That same research suggests the use of metalanguage beyond advanced learners and reading and writing tasks to include even beginner learners and oral communication.

Purpose of the Study and Research Questions

Most VE projects have looked at interactional aspects (Akiyama 2014; Bueno-Alastuey, 2013; Saito & Akiyama, 2017), but the effect of metalinguistic information in oral interaction of tasks carried out in a VE has not been systematically investigated. Research into the role of interactional feedback and negotiation of meaning in LREs has so far largely disregarded the role played by metalanguage in making linguistic forms more noticeable, specifically in terms of the additional opportunities it affords for focusing attention on the targeted linguistic aspect and scaffolding these episodes. The current study intends to observe instances of focus on form, interactional feedback, meaning negotiation, and subsequent opportunities for modified output, repair, and LRE resolution rates occurring in virtual exchanges by examining different types of LREs and assessing the role metalanguage may play in scaffolding these LREs. The following research questions guided the present study:

RQ1. How does the rate and nature of interactive feedback, negotiation, modified output, repairs, and resolutions vary in different tasks and LRE types?
RQ2. How do interactional feedback and meaning negotiation instantiate in different types of LREs?

RQ3. What differences can be observed in different types of LREs in relation to modified output, repairs, and resolutions?

RQ4. Does use of metalanguage result in learners producing more modified output, successful repairs, and resolutions?

Method

Participants

The participants were 36 college-level students: 18 Spanish learners of English as a Foreign Language at a Spanish university and 18 learners of Spanish at a Canadian university. The Spanish learners were taking an advanced English course at a fully online university in Spain and their counterparts in Canada were taking an upper intermediate Spanish language course. The learners at the Spanish university were either Spanish L1 speakers or Spanish-Catalan bilinguals while the learners at the Canadian institution were L1 English speakers or bi or trilingual speakers of English and other languages (Tagalog, Japanese, Arabic, and Chinese) who had moved to Canada at an early age (at least five years before entering college). 25 female students and 11 male students were distributed among three age groups. Ten students (28%) were aged between 18 and 21, 13 (36%) were between the ages of 21 and 25, and 13 other students (36%) were over 25. Overall, the students at the Canadian university were younger than the ones at the Spanish university. Most of the participants reported having either an intermediate \((N = 14, 39\%)\) or an upper intermediate \((N = 10, 28\%)\) L2 proficiency level, and eight of them \((22\%)\) reported having an advanced level. The remainder of the learners self-reported either an upper beginner proficiency level \((N = 2)\) or a high advanced level \((N = 2)\).

Most learners reported having studied the target language for between one and three years \((N = 22)\); this included all the students at the Canadian university. The remainder of the students at the Spanish university reported having studied English for between four and six years \((N = 6)\) or for more than six years \((N = 6)\). Only four out of the 36 students, all of them from the Spanish university, reported previously having taken part in a VE program.

Context

The participants took part in a VE over two and a half months following an eTandem format where learners spent half the time speaking in their L1 and the other half practicing their L2. They were informed about the goals of the study and the treatment and storage of personal data and asked to sign a consent form. The learners also filled out an entry questionnaire used to gather background information about the participants (see Appendix A); the questionnaire asked about their age, gender, years spent studying the L2, self-reported L2 level, and level of familiarity with VEs.

Tasks and Procedures

Some of the tasks were carried out in an asynchronous manner via a social network while others required learners to take part, in pairs, in a video call using a videoconferencing system which allowed them to record the tasks. Two 2-way, open-ended information exchange oral tasks were carried out in pairs during two video calls, with one task completed during each video call. The tasks were similar in length, lasting an average of 39 minutes and involving information exchange, decision-making, and comparison and analysis.

The first task (see Appendix B) at the beginning of the exchange required learners to talk about their university life and lasted 40 minutes on average. The other task which will be examined in this article is the last task, carried out at the end of the VE, two months after completion of the first task. In this task, students were asked to talk about regeneration projects in their respective cities. This task lasted 38 minutes on average, making both tasks equivalent in length.
Despite being similar in length and type (two-way and open-ended), there were some differences between the two tasks which are worth noting. The first task presented to the learners a topic which was more familiar and closer to them than the last task, and its objective was to just talk and exchange information about their own college experiences with their partner, a divergent task, whereas the last task introduced a new topic and the learners had to end the task having reached an agreement about a new regeneration project, a convergent task. Although both tasks mentioned that the learners had to help their partners in their L2 when they saw they were struggling to convey something, the instructions of the last task asked them specifically to focus and provide feedback on three to four linguistic points which posed problems for their partners. The learners participating in this exchange received no instructions on how to conduct the interaction other than to complete the task and speak half the time in Spanish and the other half in English. The data analyzed in this article therefore consists of naturally occurring conversational interactions.

Data Coding

The tasks generated 36 video recordings of 39 minutes on average, yielding 24 hours of video material including interactions in both languages. A total of 488 LREs were identified by the researcher and transcribed following Seedhouse and Richards’ (2007) transcription conventions. The data were anonymized and LREs were identified according to trigger type (lexical, phonetic, morphosyntactic, and global misunderstandings) following Bueno-Alastuey (2013), while the coding of PLREs and RLREs was done following Ellis (2001) and Loewen (2005). Each LRE was also coded for interactive constructs which comprised negotiation of meaning, such as clarification requests, confirmation and comprehension checks, interactional feedback (explicit corrections or recasts), modified output, repairs, and resolution of the LRE. The coding procedures were based on established coding schemes which will be further described. Each variable addressed the presence or absence of each given construct.

To establish inter-rater reliability, a random subsample of 15% of the data (75 LREs) was given to a second coder (a graduate student). After the second person coded the data, a simple percentage agreement was calculated for each variable. The inter-rater agreement was over 92% for all variables. Items on which the coders failed to agree were examined again by the two coders to sort out any misalignments and reach a consensus.

Preemptive LREs refer to LREs in which a learner draws attention to a linguistic item in the L2 even if no communication breakdown or focus on form has occurred in the previous turn (Loewen, 2005), as shown in Excerpt 1.

Excerpt 1

SP2: During the week I:: I run? But I don’t remember the special word. It’s not jogging. When you run fast? Or at least for an hour? It’s not jogging. Right? ← Preemptive

CAN2: No. Jogging is running more slowly eh:: But if you’re running fast I would call it going for a run.

SP2: Okay. So I’m going for a run. ← Modified output + repair

Reactive LREs (Excerpt 2) occur when a non-target-like linguistic feature of the utterance of one of the learners is brought into the conversation, thus interrupting the flow of the conversation and switching the topic of conversation to a linguistic aspect of any sort (lexical, phonetic, morphosyntactic) unrelated to the topic of conversation.
Excerpt 2

SP19: This is relativized(.)

CAN19: So, you say it is called relativized but here you would use a noun [instead of the verb there] (.)

← Reactive + explicit correction

SP19: [A:: Okay. I should use a noun]. Okay.

CAN19: Yeah so it’s called relativism.

SP19: Okay okay.

Regarding interactional feedback, LREs were coded for explicit corrections and recasts. Excerpt 2 shows an example of an explicit correction.

Recasts (Excerpt 3) are defined as partial or total reformulations of a preceding non-target-like utterance which include more target-like form(s). Recasts are often used in a conversation-like manner and focus primarily on meaning (Long, 2007), making them less explicit and less noticeable than explicit corrections (Carpenter et al., 2006).

Excerpt 3

SP2: Okay, I can’t fix the issue(.) problem with Skype but okay. At least we can hear us.

CAN2: Yeah, at least we can hear each other. [← Recast] That’s the main thing.

SP2: Hm. (2)

CAN2: Yeah and hopefully it will work.

Instead of coding for learners’ uptake, understood as the likelihood of incorporating the L1 speaker’s correction as part of their next utterance in the L2, as Ellis et al. (2001) suggest, the current coding system included instances in which the L2 speaker produced any sort of correction or modified output as a response to feedback or negotiation for meaning. Excerpt 1 displays an example of modified output.

This modified output can then lead to learners repairing their speech by incorporating either the exact correction or a target-like variation of the initial utterance. Repair is then operationalized as a learner’s successful correction of the non-target-like utterance identified in the previous turn, as also illustrated in Excerpt 1.

Self-repairs or repairs initiated by the learners themselves without any prior indication by their interlocutors were also coded. However, these were not included in the data analyzed for the current study, given that they did not occur together with any other interactive response by the interlocutor but rather as merely non-dialogical isolated utterances.

Resolutions indicate whether episodes are successfully resolved, following Yilmaz and Granena (2010) and Mackey et al. (2003) based in turn on Swain (1998) and Leeser (2004). Most of these authors propose a three-way categorization of resolutions as correctly resolved, incorrectly resolved, or unresolved. Initially, resolutions were coded in three categories but were subsequently reduced to two categories: successfully resolved or non-successfully resolved, which included both instances of unresolved and incorrectly resolved LREs. In successfully resolved LREs, the linguistic issue was resolved through self-correction or by an indication that the language point being corrected or negotiated was understood. A non-successful resolution involved an incorrectly resolved episode where the learner provided the wrong target-language expression or did not seem to understand or notice the feedback provided. Excerpts 1 and 2 would be
considered successful resolutions whereas Excerpt 3 would not.

Regarding negotiation for meaning, the coding procedure for the present study follows that of Ziegler and Phung (2019) and Foster and Ohta (2005), who define negotiation for meaning as episodes in a conversation in which the regular conversation is interrupted to ensure both speakers have an equal understanding of what the conversation is about. In relation to negotiation for meaning, LREs were also coded for the presence of comprehension checks, confirmation checks, and clarification requests, according to the categories suggested by Foster and Ohta (2005). The definitions and categorizations adopted for the current study, listed alongside the examples, are also in line with Ziegler and Phung (2019).

Clarification requests are questions asked by one of the speakers to fully understand what another interlocutor is trying to convey, as illustrated in Excerpt 4.

Excerpt 4

SP2: You are able to run one kilometer but you don’t want to do it.
CAN2: Oh when you don’t want to do something? ← **Clarification request**
SP2: Yeah but having it.
CAN2: Yeah, ehm:: like you have the desire? ← **Clarification request**
SP2: You want to do it. When you don’t have this feeling you prefer to rest in your sofa and do nothing.

Confirmation checks are defined as utterances which are specifically trying to corroborate what the other interlocutor is intending to express, as illustrated in Excerpt 5.

Excerpt 5

CAN2: Yeah, so in English it’s a vegetable steamer.
SP2: Steamer? ← **Confirmation check**
CAN2: Yeah. Steam is what we call the vapor that comes off of water when water gets hot. You see it rising when water is boiling.
SP2: Yeah! Ok! The white thing, you mean? ← **Confirmation check**
CAN2: Yeah. It looks like a cloud.
SP2: Yeah I understand.

Comprehension checks are instances in which the speaker tries to ensure that the other interlocutor understands what they were trying to express in an immediately preceding utterance, as shown in Excerpt 6.

Excerpt 6

SP2: I present you the product I chose.
CAN2: You would want to say I present to you or I would like to present to you. [← **Explicit correction**] Because you are presenting something to someone. ← **Metalanguage**
SP2: Someone, yes.
CAN2: Yeah, because if you(.) if you present a person, you are physically presenting that person.
Metalanguage] I don’t know. Does that make sense? ← Comprehension check
SP2: Yeah, yeah, yeah. It makes sense.

The presence or absence of metalanguage was coded according to Ellis’s (2016) definition of metalanguage, that is, the technical or non-technical terms used by learners to talk about language or explain the rules of the language to their interlocutors. Excerpt 6 offers an example of the use of metalanguage to modulate the correction offered by the CAN2 participant in her first turn.

Data Treatment
For statistical analysis and after checking for conformance to normality of each variable according to Kolmogorov-Smirnov (K-S) tests ($p > .05$), the present study used ANOVA tests to measure the effect of task, type of LRE (preemptive and reactive), and metalinguistic information. Separate ANOVAs were conducted to answer research questions RQ1 (tasks), RQ2 and RQ3 (LRE type), and RQ4 (metalinguistic information). Effect sizes were calculated for the tests that proved significant, and Cohen’s d index was reported as a measure of effect size. Effects were considered small when $d \leq 0.20$, medium when $d = 0.20$ to 0.80, and large when $d \geq 0.80$.

Results
Following an initial description of the type of triggers and the characteristics of each task in terms of length and amount of LREs identified, the results corresponding to the different research questions will be presented.

Overall, a total of 488 LREs were identified in the corpus; Task 1 (T1) yielded 271 LREs and the last task (T3) 217. Overall, these LREs contained interactions in Spanish in 56% of the cases and English in 44% of the cases. Most of the LREs were triggered by a lexical item ($N = 308, 62\%$), whereas phonetic triggers were much less common ($N = 105, 22\%$). Global LREs, that is, LREs containing a global misunderstanding, were the least common ($N = 61, 13\%$) together with morpho-syntactically-triggered ones ($N = 52, 11\%$). Regarding LRE types, preemptive LREs were slightly more common than reactive LREs ($N = 251, 51\%$, and $N = 237, 49\%$, respectively).

RQ1: How does the rate and nature of interactive feedback, negotiation, modified output, repair, and resolutions vary in different tasks and LRE types?

One-way ANOVA tests were run to determine whether the different tasks exhibit any differences regarding the amount of interactive feedback and meaning negotiation. The tests revealed that the difference in the percentage of explicit corrections between the two tasks, 25% ($N = 68$) versus 36% ($N = 79$) as displayed in Figure 1, was in fact significant ($F(1, 487) = 9.19, p = .002, d = .17$). Therefore, learners used significantly more explicit corrections during the last task, despite the small effect size. The other significant difference we can observe is in the percentage of confirmation checks used between Task 1 ($N = 103, 39\%$) and Task 3 ($N = 51, 24\%$). In this case, confirmation checks were significantly more common in Task 1 ($F(1, 487) = 10.01, p = .002, d = .17$), though the effect size was small.
Figure 1

Percentage of Interactive Feedback and Meaning Negotiation in Different Tasks

On the other hand, no significant differences were observed in the percentage of recasts, clarification requests, and comprehension checks between the two tasks.

Preemptive and reactive LREs displayed similar tendencies, as shown in Table 1. First, the occurrence of explicit corrections increased for both LRE types in T3, although ANOVAs show only a significant increase in the case of RLREs ($F(1, 235) = 9.82, p = 0.001, d = .24$) and a medium effect size. Secondly, confirmation checks decreased in both PLREs and RLREs in a comparison of T1 and T3, but they only did so significantly in PLREs ($F(1, 247) = 8.78, p = 0.003, d = .21$), also with a medium effect size.

Regarding resolutions, modified output, and repairs, in PLREs we see a slight decrease between T1 and T3. However, with respect to RLREs, we see an increase in all three, and the difference between the percentages in T1 and T3 is significant in the case of resolutions ($F(1, 247) = 4.39, p = 0.037, d = .16$) and repairs ($F(1, 235) = 8.98, p = 0.003, d = .23$), with a medium effect size.

To summarize, and in response to RQ1 regarding the differences between the two tasks, we can only observe a significant difference in the occurrence of explicit corrections and confirmation checks. Explicit corrections (interactional feedback) were significantly more common in the last task, whereas confirmation checks (meaning negotiation) were significantly more common in the first one. This tendency holds true when we divide LREs into preemptive and reactive LREs, but the increase of explicit corrections in the last task is only significant in RLREs, and the decrease in confirmation checks in the same task (T3) is only significant in PLREs. Moreover, RLREs led to significantly higher successful repairs and resolutions of episodes, as shown in the increase in T3.
Table 1

Frequency and Percentages of Feedback Type, Negotiation, Modified Output, Repairs, and Resolutions in Preemptive and Reactive LREs in Different Tasks

<table>
<thead>
<tr>
<th></th>
<th>Preemptive</th>
<th></th>
<th></th>
<th></th>
<th>Reactive</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1 n = 149</td>
<td>T3 n = 102</td>
<td></td>
<td></td>
<td>T1 n = 122</td>
<td>T3 n = 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sum %</td>
<td></td>
<td></td>
<td>Sum %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recast</td>
<td>4</td>
<td>3%</td>
<td>4</td>
<td>4%</td>
<td>1</td>
<td>1%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Explicit corrections</td>
<td>40</td>
<td>27%</td>
<td>30</td>
<td>29%</td>
<td>29</td>
<td>24%</td>
<td>49</td>
<td>43%</td>
</tr>
<tr>
<td>Clarification requests</td>
<td>39</td>
<td>26%</td>
<td>31</td>
<td>30%</td>
<td>67</td>
<td>55%</td>
<td>52</td>
<td>45%</td>
</tr>
<tr>
<td>Confirmation checks</td>
<td>66</td>
<td>44%</td>
<td>26</td>
<td>25%</td>
<td>32</td>
<td>26%</td>
<td>25</td>
<td>22%</td>
</tr>
<tr>
<td>Comprehension checks</td>
<td>7</td>
<td>5%</td>
<td>8</td>
<td>8%</td>
<td>8</td>
<td>7%</td>
<td>4</td>
<td>3%</td>
</tr>
<tr>
<td>Correctly resolved</td>
<td>132</td>
<td>89%</td>
<td>87</td>
<td>85%</td>
<td>103</td>
<td>84%</td>
<td>108</td>
<td>94%</td>
</tr>
<tr>
<td>Modified output</td>
<td>113</td>
<td>69%</td>
<td>66</td>
<td>65%</td>
<td>73</td>
<td>60%</td>
<td>80</td>
<td>70%</td>
</tr>
<tr>
<td>Successful repairs</td>
<td>118</td>
<td>79%</td>
<td>74</td>
<td>73%</td>
<td>49</td>
<td>40%</td>
<td>68</td>
<td>59%</td>
</tr>
</tbody>
</table>

* Significant differences between T1 and T3

RQs 2 and 3: How do interactional feedback and meaning negotiation instantiate in different types of LREs? What differences can be observed in different types of LREs in relation to modified output, repairs, and resolutions?

To find out how interactional feedback works in different types of LRE, we compared the percentages of recasts and explicit corrections in PLREs and RLREs. In the case of recasts, due to the low numbers, the differences between the two are negligible: eight recasts in PLREs versus one recast in RLREs. Explicit corrections, as shown in Figure 2, were less common in preemptive (N = 69, 27%) than in reactive LREs (N = 78, 33%), but the difference was not significant.

When it comes to meaning negotiation, clarification requests were more common in reactive (N = 108, 48%) than in preemptive LREs (N = 64, 26%), and the ANOVA test indicated a significant difference between the two (F(1, 486) = 23.27, p = .001, d = .26) and a medium effect size. In the case of confirmation checks, these were significantly higher in reactive (N = 90, 36%) than in preemptive LREs (N = 57, 24%), as indicated by the ANOVA test (F(1, 486) = 8.35, p = .004, d = .15), though the effect size was smaller. Comprehension checks showed a similarly low number of occurrences in both PLREs (N = 15, 6%) and RLREs (N = 12, 5%).

Regarding the occurrence of modified output, repairs, and resolutions as part of RQ3, modified output (N = 190, 76%) and repairs (N = 190, 76%) were more common in PLREs than in RLREs, which showed fewer occurrences of both modified output (N = 153, 65%) and repairs (N = 119, 50%), as displayed in Figure 2. In both cases, these differences were significant, as indicated by the ANOVA tests for modified output (F(1, 486) = 7.32, p = .007, d = .14) and repairs (F(1, 486) = 35.98, p = .001, d = .21), again showing a medium effect size. In the case of resolutions, both PLREs and RLREs display very high percentages of resolutions (N = 119, 87% and N = 110, 89%, respectively).
To summarize, PLREs and RLREs showed similar levels of interactional feedback, whereas in terms of meaning negotiation, RLREs displayed more clarification requests and PLREs showed higher proportions of confirmation checks. Modified output and repairs are more common in both LRE types but especially in PLREs.

RQ 4: Does use of metalanguage result in learners producing more modified output, successful repairs, and resolutions?

To respond to RQ4, we will examine how metalinguistic information affects the rate of modified output, repair, and resolution in the LREs analyzed. Specifically, the aim is to find out whether metalinguistic information helps learners to notice linguistic items and incorporate them into the language they produce.

Since the presence of metalinguistic information was not significantly different between PLREs ($N = 47, 19\%$) and RLREs ($N = 49, 21\%$), the two LRE types are collated in the reporting of the data. The presence of metalinguistic information in LREs was significantly lower ($N = 96, 20\%$) than its absence ($N = 393, 80\%$). Figure 3 displays the means of occurrence of modified output, repair, and resolution among the LREs which contained metalinguistic information and those that did not. The percentage of resolution of the episodes was very similar in both cases (89\% versus 88\%), and the same was observed for modified output (75\% versus 69\%). In terms of repairs, however, the LREs which contained metalinguistic information displayed significantly higher occurrence of repairs (73\% versus 61\%), as indicated by the ANOVA test ($F(1, 487) = 4.89, p = 0.027, d = 0.13$).
Discussion

The present study investigated differences in tasks and the presence of metalinguistic information on the use of interactional feedback and meaning negotiation in a VE by examining PLREs and RLREs. Regarding RQ1, which examined the differences in two different tasks on the rates and nature of corrective feedback, negotiation, modified output, repair, and resolution in different types of LREs, the findings indicate a significant difference between the occurrence of explicit corrections and confirmation checks between the tasks. Explicit corrections were more common in the last task, whereas confirmation checks were significantly more common at the beginning of the exchange (Task 1). Explicit corrections pose a significant face threat for learners, as other studies have determined (Brummernhenrich & Jucks, 2016; Van der Zwaard & Bannink, 2016), and are generally not preferred. In the present study, however, they are more common than recasts, contradicting the findings of other studies such as Ziegler and Phung (2019), in which recasts were observed to be more common than explicit corrections overall, especially in video interactions. The same authors also found that confirmation checks were more common than clarification requests and comprehension checks overall, specifically in video interactions (they also looked at audio, text, and multimodal interactions).

Most studies of VE conversations have explored their effects on oral proficiency gains and motivation (Bueno-Altasuey, 2013; Canals, 2020; Hampel, 2003; Jauregi et al., 2012). The fact that explicit corrections are used at higher rates in the last task might have to do with learners becoming more familiar with the procedures of the tasks, the medium, and their partners (who remained the same throughout the exchange). This could indicate that they were less concerned about the use of explicit feedback to correct their interlocutors, thereby reducing the face-threatening nature of explicit feedback pointed out by earlier studies (Brummernhenrich & Jucks, 2016; Van der Zwaard & Bannink, 2016). The extensive use of confirmation
checks during the first task may have been a way of adjusting their speech to their interlocutors and helping to scaffold the interaction (Foster & Ohta, 2005). Another reason could be that the tasks involved different types of information exchange that could easily result in different amounts of LREs. In the first task, learners were exchanging information about themselves and their university-life experiences in an open-ended divergent type of task, while in the last task, they had to reach an agreement and decide on a common city regeneration project. Therefore, topic familiarity and task goal could also affect the amount and type of interaction observed. The first task was open-ended and divergent, as it required some information exchange but not to reach a consensus. On the other hand, the last task was a convergent task in which learners needed to exchange information and then come to a consensus, which could make this task require more interaction and negotiation of meaning (Gilabert et al., 2009) triggering different types of LREs. The fact that the last task required learners to explicitly provide each other feedback could have generated a higher number of explicit corrections as well.

Regarding the difference between PLREs and RLREs, we first observed the tendency already mentioned; however, the increase in explicit corrections in the last task was only significant in RLREs whereas the higher occurrence of confirmation checks in Task 1 was only significant in PLREs. Reactive LREs showed significantly higher percentages of successful repair and resolution in Task 3. In a study which examined the role of task type, Yilmaz and Granena (2010) also found that successful resolution (65%) was the most common outcome of the episodes overall. However, these findings (high resolution rate) could be masked by the fact that non-occurrences or avoidance (Van der Zwaard & Bannink, 2016) were not counted in either study (the current study and Yilmaz & Granena, 2010).

Given that the differences between tasks does not allow us to properly observe the differences between PLREs and RLREs, these were analyzed separately to determine the differences related to the occurrence of modified output, repair, and resolutions in relation to RQ2 and RQ3. Both PRLEs and RLREs showed similar levels of interactional feedback, but RLREs displayed more clarification requests while PLREs showed higher proportions of confirmation checks. This last finding can be explained by the nature of RLREs, in which the initial attention to form can be in the shape of a clarification request by the L1 speaker whereas PLREs often start with a question or confirmation check by the L2 speaker querying an item in the target language. However, as found in Foster and Ohta (2005), the frequency at which learners interrupt each other is much lower than the frequency of occurrence of learners repairing and producing modified output.

Modified output and repairs showed a high percentage of occurrence in both LRE types but were more commonly found in PLREs. Akiyama (2014) also found that the rate of uptake of PLREs exceeded that of RLREs. Akiyama (2014) measured the potential for noticing by calculating the rate of uptake, which corresponds to the rate of successful repair in the present study. Similar to Akiyama (2014), the present study also confirms Ellis et al.’s (2001) findings that, in VEs, the rate of uptake of PLREs exceeds that of RLREs. In PLREs, L2 speakers are more open to feedback because the learners themselves initiate the focus on form. This higher rate of uptake in PLREs is also found in a comparison between PLREs initiated by learners and RLREs initiated by teachers (Ellis et al., 2001). The same authors claimed that PLREs are “likely to involve actual gaps in the students’ knowledge” and thus offer more opportunities for L2 learning (p. 428).

In relation to RQ4, the presence of metalinguistic information was examined to determine whether it helps learners to notice linguistic items and incorporate these into the language they produce. The findings indicated that LREs which contained metalinguistic information were noticed more, as indicated by the higher occurrence of repairs. Earlier findings such as Fortune (2005) also indicated that metalinguage can play a facilitative role in focusing attention. However, the fact that LREs containing metalinguistic information are noticed more does not lead to more resolutions or more modified output.

Similar to gains from PLREs, LREs containing metalinguistic information focused explicitly on form (Lyster & Ranta, 1997), which helps with noticing and performance monitoring, thus facilitating acquisition (Ellis et al., 2001; Gass, 2003). In fact, explicit metalinguistic feedback can benefit both implicit and explicit
knowledge, as indicated by Ellis et al. (2006). Metalinguistic feedback as observed in the current study promotes uptake (successful repair), which has been deemed crucial for opportunities for learning (Swain, 1998) and for acquisition to occur (Swain & Lapkin, 1995). This finding corroborated findings by Ellis et al. (2006). In an experimental study examining the acquisition of the regular simple past tense among EFL young adult learners, the authors found that explicit feedback (metalinguistic information) was more effective than implicit feedback (recasts), and that it contributed to the development of learners’ explicit and implicit knowledge and to both system and item knowledge.

Conclusion

Overall, the findings of this study indicate that there was a difference between the behavior of the learners in the two tasks in the VE, especially in the way learners negotiate for meaning, producing more explicit corrections and fewer confirmation checks in the last task. These results manifest the potential gains for learners participating in these types of exchanges and sustaining a constant communication flow with their partners throughout the exchange. In this way, learners become familiar with the procedures and the medium, are more receptive to feedback, and more proactive in providing feedback to their partners. In the present study, learners did what Foster and Ohta (2005) describe as “sharing their meanings while monitoring and modifying their own and each other’s utterances, minimizing overt communication breakdowns, and the accompanying frustration” (p. 425).

The findings related to the difference between PLREs and RLREs provided additional evidence of the importance of examining PLREs. This presents important insights regarding the opportunities for learning offered by PLREs in dyadic interactions in VEs between L1 speakers who take turns in being L2 learners and experts in the L2s of their counterparts. They indicate the opportunities for learning afforded by PRLEs and their importance for addressing L2 knowledge gaps. This could have potential implications that should be considered when designing oral interactive tasks and indicated in the task instructions. Asking for questions about linguistic issues during an oral interaction task or momentarily going off-task to discuss a language point should perhaps not be discouraged and penalized but rather encouraged in learner-learner interactions.

The results regarding the effect of metalinguistic information help us to broaden our understanding of the role of noticing and explicit focus on form in these types of interactions, which has been linked to higher levels of noticing and cognitive comparison (Ellis et al., 2006) and repair, evidencing performance monitoring as an aid to L2 learning (Ellis et al., 2001; Gass, 2003).

This study underscores the importance of VEs in providing affordances that elicit PLREs, which still fail to receive the necessary attention in learner-to-learner interactions, particularly in interactions in voice and video-based SCMC modalities (Guth & Marini-Maio, 2010; Loewen & Sato, 2018; Monteiro, 2014; Rassaei, 2017; Yanguas, 2012; Ziegler & Phung, 2019) as part of VEs (Akiyama, 2014; Canals, 2020). These type of interactions offer learners opportunities for attention to form within meaning-related tasks which are pivotal for the development of the target language (Smith, 2004). These constitute important pedagogical implications as we move into a time of increased online foreign language instruction in the aftermath of the COVID-19 pandemic. Video-based SCMC, as part of VEs or as stand-alone modalities, are increasingly being incorporated in regular online foreign language instruction. Therefore, designing tasks in which meaning negotiation and focus-on-form are encouraged in interactions between learners using SCMC could prove particularly beneficial for L2 development.

One of the limitations of this study lies in its failure to account for the rate of non-occurrence or missed opportunities for negotiation for meaning, as suggested by Van der Zwaard and Bannink (2016), something which the author intends to analyze in future articles. There are three other important limitations that were not addressed in this article due to space constraints and the limited scope of this article. First, the absence of a comparison between the two groups of students at the two institutions, especially given the differences in proficiency levels in their respective L2s, should be noted. Secondly, the study could have used
stimulated recall interviews, like those used by Sato (2013), to collect learners’ impressions on the use of metalanguage and interactional feedback. And lastly, it would have been interesting to determine whether the language of the LREs (Spanish or English) could affect the distribution and presence of PLEs, RLREs, and metalanguage in the two tasks examined in this article.

Acknowledgements

I would like to express my gratitude to Cristina Ráfales from Dalhousie University for her involvement in putting together this Virtual Exchange and to the learners at Universitat Oberta de Catalunya and Dalhousie University who agreed to take part in it.

References

Appendix A. Entry Questionnaire for the Virtual Exchange

* = Required

1. Nationality *

 Mark only one oval.
 Spain
 Canada
 Other:

2. University *

 Mark only one oval.
 Universitat Oberta de Catalunya
 Dalhousie University

3. Gender

 Mark only one oval.
 Male
 Female
 Other:

4. Age

 Mark only one oval.
 17-20
 21-25
 25+

5. Current level of English/Spanish

 Mark only one oval.
 A1 - Beginner
 A2 - Upper Beginner
 B1 - Intermediate
 B2 - Upper Intermediate
 C1 - Advanced
 C2 - Advanced +

6. Current Degree

7. Are you motivated to learn English/Spanish at the University? *

 Mark only one oval.
 1 2 3 4 5
 Not at all Very much

8. Do you think technology can help you develop your skills in your language class?*

 Mark only one oval.
 1 2 3 4 5
 Not at all Very much
9. Do you think that working in collaboration with your classmates can help you improve your English/Spanish skills? *
 Mark only one oval.

 1 2 3 4 5
 Not at all Very much

10. Do you think that working with students who are native speakers can help you improve your English/Spanish skills? *
 Mark only one oval.

 1 2 3 4 5
 Not at all Very much

11. Have you ever worked with students from another country in your English/Spanish classes through Telecollaboration? *
 Mark only one oval.
 Not really Yes, I have

12. Have you ever taken an online course before? *
 Mark only one oval.
 Not really Yes, I have

13. Have you ever taken an online language course before? *
 Mark only one oval.
 Not really Yes, I have

14. Have you used online tools to improve your language skills? If yes, name at least one. *
 Mark only one oval.
 Not really Yes, I have

15. If you answered yes to the question above, name at least one.

16. Do you prefer working by yourself in your English/Spanish classes?
 Mark only one oval.

 1 2 3 4 5
 Not at all Very much

17. How many years have you been studying English/Spanish?
 Mark only one oval.
 Between 1-3
 Between 4-6
 More than 6
18. What do you think is the best way to improve your oral skills in a foreign language?

Check all that apply.
- Watching TV/movies/series
- Listening to native speakers talk
- Practising pronunciation
- Talking to a native speaker
- Talking to other students
- Being exposed to the language when traveling abroad
- Immersion: i.e. Living abroad
- Other:

Appendix B. Description of the Mandatory Tasks and Links to the Task Instructions

Task 1: University life

Before starting… Please, try to participate in the G+ community by adding a little bit of information about yourself. You can do it throughout the telecollaboration exchange because it will allow you to practice on how to post in the community which will be part of your tasks 2 and 3.

First video-conference session: Meet with your telecollaboration partners and speak for approximately 30 minutes (Minimum 10 minutes in English) in Skype (first synchronous exchange).

This will be your first encounter with the tool we’ll be using to record our sessions so you can treat it pretty much like a test-session where you have to become familiar with the medium of communication so that you can get ready to do more complicated tasks in the following weeks.

- Talk about your university and university life in your city during your video-conferencing session.
 Before starting the call, take a look at these questions. You may also want to add your own...

When did you start university?

Why did you choose UOC / your program?

What year are you in? What degree are you studying? Is it hard to get into UOC / your program? How much does it cost? Do you need an entry grade? Where is the campus located? Is it far from your house?

How do you like UOC / your program?

In your opinion, what are the strengths and weaknesses of your program and/or university?

What are the advantages and disadvantages of taking a course online? Have you taken other online courses before?

What services does UOC offer that you find useful or appealing? What is campus life like at UOC (if applicable)?

Tips on how to have a successful video-chat with a native speaker

Here I’m listing some tips on video-conferencing that I hope you find useful, especially if you haven’t participated in a video-conference before.
General issues

- It’s important to project your voice and use body language and facial expressions to convey the ideas because technological tools and the speed of the internet connection don’t always guarantee good quality image or sound.

Language issues

- When you are speaking in your native language, help your partner cope with communication breakdowns without intimidating them.
- Provide assistance if they are looking for a word or expression they can’t recall.
- Ask for clarification in a kind manner:
 - “What you said is very good, but can you explain more?”
 - “I like what you have suggested. However, I think you should pay more attention to XXX”
 - “I think when you said XX you really meant YY, is that so?”
 - “I didn’t quite get what you said, could you repeat that last sentence/word/idea?”
- Provide feedback on pronunciation of words only when the other person asks for it.

Task 2: Improving our local communities

This task has two parts: the first part will help you get ready for your video-conferencing session and the second part will take place after the video-conferencing session and will serve as a wrap-up for the entire task. During these days you will be talking about ideas on how to improve people's lives in our local communities. In order to do that, you will need to do some research regarding existing projects in your area and then later on come up with a new project idea together with your partner.

PART A: Thinking about an area of your city that you want to talk about

Think about possible sites in the town you live in which have been regenerated and turned into useful community spaces. It can be a project that you know or some new initiative you want to learn some more about. To get inspired you may read about the two projects that regenerated their districts from the materials in unit Arts and Culture. If you live in/want to talk about Barcelona you may think of the several projects put forward by Ada Colau to regulate and legislate against rent speculation by real estate businesses, tourist apartments, car-free days or super-blocks project (you can find some more information in this article or this other one).

Get prepared to explain the project of your choice to your Canadian partner. Prepare a short presentation/explanation/notes for your Skype call in which you outline:

- what kind of regeneration project it is
- how does it benefit the town and the local community
- what possible drawbacks the project might give rise to
During the call
Meet your telecollaboration partners and speak for approximately 30 minutes (minimum 10 minutes in English) in Skype. The following structure is meant to be a guide of what the conversation could be, but we would like to see a “real” spontaneous conversation between the two of you so we don’t really expect to see this exact structure and order.

Structure of the video-call:

- Greetings and catching up.
- Present your project. It’s ok to check your notes, but try not to read, sound natural: while you speak you can pause and make sure your partner follows what you are saying (Did I say that correctly? Do you understand what I mean? Should I try to explain that again/in a different way?).
- Listen to your partner talk about their project.
- Comment on the content of your partner’s presentation.
- Give each other feedback about 3 or 4 language points (pronunciation, grammar, vocabulary, intonation)

Now imagine you have been given an award by the city council and you have unlimited resources to spend on a project similar to the ones you have been discussing before:

- Come up with a new regeneration project to improve your local community(ies) that takes into account the benefits or opportunities of the two projects you discussed before for a specific area of the city or a specific group or community in a city one of you (or both) know.
- Brainstorm and note down some ideas as to how your project will benefit the community in general and the town as a whole, note down any drawbacks/issue that might arise from it, and make a few suggestions on how you might deal with those.

Some tips for you to bear in mind during your video-conference session
- Have pen and paper ready to write down 3 or 4 comments about language or content issues of your partner’s speech in their target (foreign) language. Do not attempt to provide feedback on more points, enjoy the conversation as much as possible.
- It’s important to be aware of the time you devote to speaking in each language. Both you and your partner have to benefit from speaking your target language (the one you are learning).
- When speaking your native language don’t forget to be patient and speak slowly and make sure you give enough time for the other person to practice their Spanish.
- You may want to spell, define or write in the chat the words that you don’t understand or your partner doesn’t understand.
- Ask for clarifications and for your partner to repeat words and sentences that you don’t understand as many times as you need to and don’t forget to write down the new vocabulary you learn from your partner.
- It’s always nice to show interest about your partner’s presentation and to improvise and ask
questions and comment on things that caught your attention.

● **Netiquette**: be extra polite when asking about personal issues and don’t ask direct questions about “sensitive” issues such as personal information, family, cultural issues, religion, illnesses…

PART B: Write a short project proposal to post in the G+ community

● You will have to write a short text with 2 paragraphs of about 250 words each. You will write your bit in English and your Canadian partner will write her/his bit in Spanish.

● You should first create a very short outline about what to include in each paragraph and decide who will write the first and who will write the second bit. You can take a look at the recording of the video-conferencing task or the notes you took during the call so that you can organize your texts. Here you have a few ideas:
 ○ Brief description of the main aim of the project
 ○ Who will benefit from it?
 ○ What will it help do/develop/improve/enhance?
 ○ What are some of the problems that you can run into? How would you solve them?
 ○ Where would/could it be implemented (it can be a cross-country, inter-city project)?

● After writing the first draft of the text, email your Canadian friend for feedback on your writing. S/he will do the same.

● Correct the text you got from your Canadian friend using track changes/clear edits so that s/he can see what bits you have changed and why. Email your teacher the corrections you got from your partner.

● Put together the entire text and post it to the G+ community

● Comment on at least the two other projects/ideas you liked the best in the G+ community.

About the Author

Laia Canals is an Associate Professor of English at the Arts & Humanities Department at the Universitat Oberta de Catalunya. Her research addresses technology-enhanced task-based language teaching and learning, instructed second language acquisition, telecollaboration, and intercultural communication.

E-mail: ecanalsf@uoc.edu