
UnityAccessibilityToolkit (UA11Y): Developer Tool and Roadmap to Make
Games More Accessible for People with Vision Impairments

Klemens Strasser
Graz University of Technology

Austria

Johanna Pirker
Graz University of Technology, Austria &

Ludwig-Maximilians-Universität, Germany &
jpirker@tugraz.at

Abstract

An increasing number of game productions rely on
accessibility features. Large productions like The Last of
Us demonstrate what is possible in this area, but many
games still lack essential accessibility features. Smaller
productions often lack the knowledge and resources to
implement different accessibility features.

In the first part of this paper, we investigate how
people with vision impairments play video games and
compare current accessibility features. Based on our
findings, we present a roadmap and guidelines for
improving game accessibility for individuals with a
color vision deficiency, low vision, or any form of vision
impairment.

In the third part, we introduce the
UnityAccessibilityToolkit, a toolkit for game developers
to quickly and easily integrate accessibility elements
for players with vision impairments into a game. We
evaluated the toolkit with nine developers who were
challenged to make a simple match-3 game more
accessible. Our results demonstrate that the Unity
toolkit is easy and fast to use, and that important
accessibility features can be implemented quickly.

1. Introduction

Video games have become an integral part of our
lives and serve as a means of social interaction and
escapism from daily challenges and difficulties (Calleja,
2010). With online multiplayer games, people can
connect with family, friends, and strangers to solve
puzzles, quests, and challenges together (AbleGamers,
2020). However, mainstream games mostly rely on the
visual abilities of their users, thereby excluding people
with visual impairments (Porter, 2014). According to
the World Health Organization, an estimated 253 million

people worldwide live with a visual impairment, making
accessibility a critical issue in game development.

While some games have shown the potential of
including accessibility features for this user group, such
features are still rare in mainstream game development
(Atkinson et al., 2006). In this paper, we aim to
explore the gameplay strategies of people with visual
impairments and discuss the basic interaction forms and
vision accessibility features required for video games.

Based on our research findings, we describe a
roadmap and guidelines for areas of improvement
to make games more accessible for individuals with
color vision deficiency, low vision, or any form of
vision impairment. Additionally, we have designed a
prototype using the UnityAccessibilityToolkit to help
game developers more easily incorporate accessibility
features, such as improving navigation in a game world
and providing better access to UI elements. We
aim to evaluate the effectiveness of this prototype in
facilitating the integration of accessibility features by
game developers and their willingness to invest time
in enhancing their games with such features. This
work is based on the thesis by the first author and the
full thesis includes additional implementation details
Strasser, 2021.

2. Related Work

Accessibility in games is an increasingly relevant
topic and is more and more also addressed in the
AAA industry. We can see many new devices and a
much more general awareness of accessible methods,
including special controllers, accessibility guidelines,
dedicated modes and adjustable controls, and difficult
systems. However, creating video games is already a
difficult endeavor and comes with so many challenges.
Considering accessibility is often an issue disregarded

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 2644
URI: https://hdl.handle.net/10125/106703
978-0-9981331-7-1
(CC BY-NC-ND 4.0)



by developers, especially indie developers. However,
considering accessibility can give access to more
players. So considering accessibility in the game
development process is not only important for the the
inclusion of players, but also for game developers.
Several strategies have been implemented in the past to
help visually impaired users navigate and interact with
computing devices. These include features and assistive
technologies such as adjusting the graphical user
interface, using refreshable braille displays, magnifiers
or zoom features, speech synthesizers, and screen
readers (Taylor, 2009; Thatcher, 1994). These
technologies have made it possible for visually impaired
people to use many common applications and programs.
However, gaming with a visual impairment can be an
added challenge, as many games rely heavily on visual
elements.

2.1. Games for People with Visual Impairment

The game workflow presents two major challenges
for accessibility: not only must the game itself be
made accessible, but also the related navigation and title
screens (Game Accessibility Guidelines, 2019). Most
games are built with cross-platform game engines like
Unity1, which present accessibility challenges of their
own.

One issue is that these engines often render the user
interface in a way that its elements are not exposed
to the screen reader being used, and the in-game
menu navigation is not supported by the system screen
reader (Andrade et al., 2019). Some games have
attempted to make the menu accessible by imitating
screen reader-like behavior, where every menu element
is communicated to the user through the spoken word
(RARECSM, 2019). However, these settings are not
always turned on by default, and visually impaired users
must find a way to enable them.

We have now established a knowledge of how a
visually impaired user can go from wanting to play a
game to the actual point of playing the game. While
researching games that can be played by visually
impaired gamers, we found four different categories of
games:

• I. Games that are not accessible at all,

• II. Games that were not intended to be accessible,
but the visually impaired community found
ways to play them nonetheless. Thus, these
games can be called Unintentionally Accessible
Experiences. Examples: Madden NFL EA
Tiburon, 2020’s sports commentary ); Mortal

1https://unity.com/

Kombat also features a limited directional
movement NetherRealm Studios, 2019 (see
Andrade et al., 2019; Vice News, 2019)

• III. Games that communicate the content first and
foremost via audio instead of visuals. These
games are called Audio Games. Examples:
The Blindfold games by ObjectiveEd2 show
how these earcons (auditory icons, which are
audio cues or sounds to convey information or
provide feedback) can effectively be used to turn
well-known games into audio games. Blind
Legend is an action-adventure game by DOWiNO
(DOWINO, 2016).

• IV. Games that heavily rely on visuals, but
have either special accessibility settings or
support tools like screen readers to make them
accessible to visually impaired players. We
call them Intentionally Accessible Mainstream
Experiences. Examples: Shredder Chess
(Skizzix, 2009), Subwords (Strasser, 2018),
(Naughty Dog, 2020).

In addition to mainstream games and games
designed for entertainment, there are also games
that have been specifically built for scientific studies
but were never made available outside those studies.
Examples include Blind Hero (Yuan and folmer eelke,
2008) and Rock Vibe (Allman et al., 2009), which
are imitations of popular music games Guitar Hero
(Harmonix, 2007a) and Rock Band (Harmonix, 2007b).
These games require special hardware that was only
built for the study and were not released for public use.

2.2. Game Development for Vision
Accessibility

Today, game development is often done using game
engines such as Unity or Unreal, which are designed to
make it easier for developers to create games. Therefore,
including accessibility features directly into the game
engine can be an important and crucial step in making
it easier for developers to create accessible games and
experiences. In this study, we examined the most
popular game engines and compared the available vision
accessibility features.

In this study, we focused on the game engine Unity
and examined asset packages for vision accessibility for
Unity. Asset packages are extensions and plugins for
the Unity game engine that provide different features
to support game developers. Some of them are even
free to use. We found the following packages: The

2https://blindfoldgames.org

Page 2645



Color Vision Deficiency
(In-Menu and In-Game)

Ensure all elements are
visible with any form of color
blindness

Create color vision
deficiency simulator

Allow players to pick colors
for important information

Create a color picker UI
element

Provide a predefined color
palette suitable for different
forms of color vision
deficiency

Don’t use color alone to
convey information

Provide a standardized set
of icons that can be used for
different colored objects

Figure 1: Areas of improvement for individuals with a
color vision deficiency

Colorblind Effect3, which addresses colorblindness;
UI Accessibility Plugin4 (UAP), which makes UI and
UI-heavy games accessible by providing a screen
reader; and the Responsive Spatial Audio for Immersive
Gaming5, which provides spatial audio.

While some tools are already available, many of
them only support specific or limited features. Based on
our findings, in the next chapter, we present a roadmap
for developments in vision accessibility in the game
development process.

3. Roadmap for Vision Accessibility

Guided by our discussion of available features
and how people with vision disabilities interact with
computing devices and games, we have compiled the
following potential roadmap to raise awareness of areas
where vision accessibility can be enhanced for games
created in game engines. Figures 1, 2, and 3 provide an
overview of different areas for improvement categorized
into three groups: (1) enhancements for individuals
with color vision deficiency, (2) enhancements for
people with low vision, and (3) enhancements for any
form of vision impairment. We distinguish between
enhancements that may be added with an extension
for the game engine and those (noted with a dashed
line) that must be specifically created as part of the
game (e.g., adding realistic sound design). These
figures provide a first overview of potential areas for
improvement but are not intended to be comprehensive.

4. Unity Accessibility Toolkit (UA11Y)

Based on our study of related work and
the roadmap we developed, we designed the
UnityAccessibilityToolkit (UA11Y), a toolkit
implemented as a Unity asset package that helps game
developers create or update games with accessibility
features for visually impaired gamers. The toolkit

3shaders/fullscreen-camera-effects/colorblind-effect-76360
4gui/ui-accessibility-plugin-uap-87935
5game-toolkits/responsive-spatial-audio-for-immersive-gaming

-a-microsoft-garage-144702

Low Vision

In-Menu

Contrast

Ensure that there is always
a high contrast between
background and menu
elements

Create a Unity Plugin to
calculate a color with high
contrast for a given color

Automatically adjust
contrast to the settings of
the platform

Expose platform settings to
Unity

Implement a Dark Mode

Allow to remove stylized
backgrounds

Legibility
Allow the user to change
the font of UI elements Provide a set of legible fonts

Increase Size

Allow to increase size of
menu elements

Create a scalable UI system

Implement dynamic font
size system for Unity UI

Automatically adjust sizing
to the settings of the
platform

Expose platform settings to
Unity

In-Game

Contrast

Offer an outline shader

Allow to adjust color of
subtitles

Create a color picker UI
element

Create an accessible
subtitling system

Allow to add a background
to subtitles

Create an accessible
subtitling system

Automatically adjust
contrast to the settings of
the platform

Expose platform settings to
Unity

Increase Size

Allow to increase size of
HUD elements Create a scalable UI system

Allow to increase size of
subtitles and other texts in
the game

Implement dynamic font
size system for Unity UI

Automatically adjust sizing
to the settings of the
platform

Expose platform settings to
Unity

Allow zooming the camera
freely

Legibility

Allow the user to change
the font of subtitles and
other texts Provide a set of legible fonts

Figure 2: Areas of improvement for individuals with low
vision. Dashed lines refers to elements that need to be
created as part of the game.

Any Form of Vision
Impairment

Pre-Game

Buying

Website

Create a template for a
screen reader accessible
website

Create a tool to generate a
website that highlights
accessibility features

Offer a screen reader
accessible way to buy the
game

Installation

Offer a screen reader
accessible way to install
the game

Launching

Offer a screen reader
accessible way to launch
the game

In-Menu

Offer screen reader
support

Voiced menu items

Offer Text to Speech
support

Create audio recordings
for all menu items

Make sure the menu is
deterministic

In-Game

Cut Scenes Offer a audio description

Menu Navigation

Implement a system that
can automatically create
an audio description of an
Unity scene

Create a separate audio
description track

Gameplay

Navigation

Discrete Navigation

Offer screen reader
support

Imitate screen reader
behavior

Continuous Navigation

Implement a navigation
agent that can guide the
player to a given target
point via audio

Implement an Auto
Navigation system

Observation

Implement a Sonar system

Implement a system that
can automatically create
an audio description of an
Unity scene

Add a system to pause the
game and let the player
observe all elements that
are currently visible

Offer screen reader
support

Imitate screen reader
behavior

Implement a voiced
location system that can
tell the player what’s in
front of them while moving

Add realistic audio design

Figure 3: Areas of improvement for individuals with any
form of vision impairment

Page 2646



is designed to be easily extended with additional
accessibility features. In the first iteration, we focused
on improvements for vision accessibility, with a special
focus on the features we identified in our roadmap in
the previous section:

• Menu Navigation: Help navigation through the
menu of a game to start the actual gameplay or
to adjust settings

• Environment Observation: Pausing the game and
letting the user observe all the elements that are
currently visible

• Discrete Navigation: Navigating elements or a
character on a fixed grid

• Continuous Navigation: Freely moving a
character around an environment

Menu navigation, discrete navigation, and
environment observation can be realized with a
screen reader. Thus, the first part of the toolkit is
the implementation of a screen reader for Unity. The
second part can be realized with a Navigation Agent.

4.1. Accessiblity Signifier

As a basis for accessibility enhancements, we
designed and implemented an auditory accessibility
signifier that developers can attach to Unity game
elements. In his book The Design of Everyday Things,
Norman, 2002 describes signifiers as ”any mark or
sound, any perceivable indicator that communicates
appropriate behavior to a person”. The signifier stores
details, including possible interactions, about a game
object and adds information on whether a game object
is accessible at all. Our accessible signifier is inspired
by the UIAccessibility protocol from UIKit, a
standard UI framework for iOS, and has the following
four properties:

• Label: A short but concise label of the object.

• Traits: Indication of how the game object behaves
or should be treated.

• Value: The value of the game object.

• Description: Detailed description of the function
of the game object. This should give additional
context to the function of the object and how to
interact with it if this isn’t obvious through labels,
values, and traits.

Figure 4 provides an overview of how this can be
used with a button or a slider.

Start Game

Label: Start Game
Traits: [Button]
Value: -
Description: -

Label: Soundeffects Volume
Traits: [Adjustable]
Value: 50%
Description: Swipe up or
down with one finger to adjust
the value

Soundeffects

Figure 4: Examples of how to use the values of the
accessibility signifier with a button (left) and a slider
(right)

System

Unity

Visible Game
Elements

Game Object
Accessibility
Signifier

Game Object
Accessibility
Signifier

Game Object
Accessibility
Signifier

Game Object
Accessibility
Signifier

Game Object

Game Object
Screen Reader
Visualizer

Input
Receiver

Screen Reader
Manager

Native
Screen Reader

Custom
Screen Reader

Screen Reader Speech Synthesizer

Settings

Figure 5: Architecture of the screen reader

4.2. Implementation of the Screen Reader

As mentioned earlier, screen readers are one of the
most important features for making a game visually
accessible. However, game objects in Unity are not
visible to other screen readers, such as VoiceOver
or Windows Narrator. These screen readers are
already well-known and used by users, so it is
preferable to use them rather than implementing a new
one. Therefore, we implemented a Screen Reader
Manager to capture all accessible in-game objects on
the screen. This information is then forwarded to
the native screen reader, which is built from scratch
for Unity. Figure 5 provides an overview of our
architecture. Figure 6 illustrates how the screen reader
sorts game objects with the accessibility signifier based
on their screen coordinates, which are then sent as
an auditory announcement using the system’s known
speech synthesizer.

Page 2647



Soundeffects

Music

Accessibility About

Settings 1
2

3

4

5 6

Figure 6: Example of how our screen reader will sort the
game object with the accessibility signifier

2 3

4 5

6 7

89

Player

Destination

Current
Auditory Area

Agent

2 3

4 5

6 7

89

Player

Destination

Current
Auditory Area

Agent

Figure 7: Sketch of how continuous navigation is eased
via the navigation agent. Left: Initial position of player
and navigation agent. Right: The first intersection was
reached and the agent moved to the second one.

4.3. Implementation of the Navigation Agent

The navigation agent is designed to enable
continuous navigation from any location to other
reachable in-game points. The developer has to add
a user interface enabling choosing a location, which
is sent to our navigation agent. The navigation agent
calculates a navigation path and navigates the players
through calculated straight lines from point to point
through positional earcons. Figure 7 illustrates an
example of how this navigation is designed.

4.4. Use Cases

In this section, we describe examples of how the
implemented features of the toolkit can be used to make
games more accessible for visually impaired players.

4.5. Menu Navigation

For this use case, we used the FPS Microgame6

provided by Unity. We added our Game
Acccessibility components (UA11YSlider,
UA11YTooglet,...) to the UI elements and added
our UA11YScreenReaderManager prefab to the
scene to create the screen reader, finding the accessible
objects in the scene, and handing them to the screen

6https://assetstore.unity.com/packages/templates/fps-microgame-156015

Figure 8: Menu navigation in the Pause/Options menu
of the FPS Microgame. The highlighted element is the
Look Sensitivity slider.

reader. Figure 8 demonstrates how the menu looks with
the activated screen reader.

4.6. Environment Observation

Environment observation allows players to pause the
game and observe the surroundings via the screen reader
(e.g. by stepping through visible objects or browsing the
objects with the mouse cursor). We again used Unity’s
FPS Microgame as a basis.

We utilized the UA11YElement Component to
label important objects like enemies or door markers
and ensured that each element had a corresponding
Collider Component attached. This was essential
for excluding non-visible objects using raycasting
techniques to determine intersections between rays and
objects7. To enable pausing the game with a key press,
activating the UA11YScreenReaderManager, and
calling its VisibleElementsDidChange(), we
could then navigate through the accessible elements on
the screen, as depicted in Figure 9.

4.7. Continuous Navigation

Continuous navigation refers to unrestricted
movement within a 2D or 3D space, such as exploring
open-world environments or locating non-player
characters. To make this type of navigation accessible,
we developed a navigation agent. We showcased this
agent’s functionality using the FPS Microgame.

In this game, there is a main enemy called the
turret, and we aimed to provide auditory guidance to
this enemy using the navigation agent. To achieve this,
we simply added the UA11YNavAgentManager to
the scene and, upon a key press, initiated the navigation
guide to the enemy turret GameObject. This action
triggered the calculation of a navigation path from
the player’s position to the turret and initiated audio

7https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Page 2648



(a) Door indicator

(b) Enemy robot

Figure 9: Getting information about the visible objects
via environment observation.

navigation along this path. You can view the path in
Figure 10.

4.8. Discrete Navigation

We also wanted to cover discrete navigation on a
fixed grid with the screen reader, but since the FPS
Microgame uses Continuous Navigation, we used a
different sample project for demonstration. We selected
a match-3 puzzle game from a RayWenderlich tutorial8,
similar to Bejeweled game:Bejeweled.

To enhance gameplay for individuals with vision

8https://www.raywenderlich.com/673-how-to-make-a-match-3-game-in-unity

Figure 10: The navigation path calculated by our
navigation agent, going from the players’ position to the
turret enemy.

impairments, we attached a UA11YElement
Component to each game tile and labeled them by
type. We also provided the grid locations for sequential
navigation, although browsing remains a more efficient
way to play. Additionally, we subscribed to the Click
UA11Y-Element-Interaction-Event-Type
to activate the tile selection. Lastly,
we kept the screen reader updated by
calling UA11YScreenReaderManager
VisibleElementsDidChange() whenever a
match occurred. This made the game board fully
accessible and interactive through the screen reader, as
shown in Figure 11.

5. Evaluation

To evaluate the usability of the toolkit, we set up
an experiment to give Unity developers the task of
integrating accessibility features to a given game with
our toolkit. The tasks were related to adding the basic
accesiblity features to a simple match-3 puzzle game
with the screen reader of our toolkit. We focused on
developers’ feedback, usability measures, and the time
they needed for the edit.

5.1. Method

We recruited 9 (P1-P9, 1 female, 8 male) game
developers between the ages 21-30, most of them with
a University background in software engineering via a
game-specific Discord server. They were compensated
with a 10C Steam voucher, and no time limit was set.
They had different levels of experience with Unity and
only one of the used Unity professionally. Table 1 gives
an overview of the participants. The data was collected
with a pre- and postquestionnaire. This included 5
demographic questions, followed by 10 questions about
sample project accessibility with screen readers, and
concluded with 11 questions about vision accessibility.
Communication was handled through Discord. The
participants recorded their screens during the study
time. Facilitators were available for questions but did
not intervene or help with the tasks. We sent them
the same sample match-3 puzzle game as described
in the previous section, taken from a RayWenderlich
tutorial9 which consists of three screens (see Figure
11). Figure 11 gives an overview. We sent the
participants the Unity project already including the
UA11Y toolkit and an overview of the toolkit with a
focus on the screen reader part and a task description
to enable the screen reading feature for this game as
described earlier. We did not intervene or help but

9www.raywenderlich.com/673-how-to-make-a-match-3-game-in-unity

Page 2649



(a) Start screen (b) Game screen

(c) Result screen

Figure 11: The three screens of the match-3 sample
game.

were available through Discord in case of problems.
In the end, we asked participants to send us their
results and fill out a post-questionnaire consisting of
questions on a Likert scale between 1 (strongly agree)
and 5 (strongly disagree), and open-ended questions.
including demographic questions, questions regarding
their process, and questions about vision accessibility in
general.

5.2. Findings

Accessibility Experience We also wanted to
understand better the general participants’ experience
with accessibility in general. The results were
disillusioning and showed that only 3 out of the
participants worked on implementing accessibility
features prior to this experiment (color blindness
post-processing filters and button remapping for a Unity
game). None of them implemented a screen reader
feature before. Six out of nine mentioned that they
did not think of this possibility, three mentioned that
they did not include it because they thought the target
group was too small and two mentioned that they wanted

to add it but did not find the right tools or features
to quickly add it. One participant mentioned, that
someone else in their development project added such
a feature. In terms of general knowledge about the
topic, 7/9 mentioned that they informed themselves
about game accessibility in the past (7 watched videos, 6
attended talks, 6 read articles, 1 learned about it during a
lecture). 4/9 mentioned that they have used any kind of
accessibility features themselves while playing games in
the past.

Accessibility of the Game Results
Out of the nine participants, six took 90-120 minutes

to complete the task, one finished in 60-90 minutes,
and two took 150-180 minutes. All participants found
the task easy to understand (AVG: 4.44 STD: 0.53) and
easily located everything they needed in the package
(AVG: 4.78 STD: 0.44). On average, they rated
implementing screen reader support as easy (AVG: 4.00
STD: 1.00), with most emphasizing the importance of
offering accessibility features in a game (AVG: 4.67
STD: 0.71). The majority expressed willingness to make
their next game accessible with a screen reader (AVG:
4.33 STD: 0.50) and utilize the toolkit (AVG: 4.67 STD:
0.50).

When participants were asked about what they
found easy to implement, all mentioned making Unity
UI elements like text and buttons accessible. One
participant expressed, ”All UI elements and text were
basically only drag and drop in Unity, which was
nice.” This ease of implementation was evident in our
assessment, as all solutions made the UI elements on the
start screen, result screen, and game screen visible and
interactive with the screen reader.

Our assessment highlights the most significant
challenge participants faced, which was making the
tiles and gameplay accessible. One participant noted,
”The tile was the only thing where no finished script
was provided, hence this took the most effort.” Before
discussing participants’ solutions, it’s important to
discuss the reference implementation. In the reference
implementation, game tiles were made discoverable for
both sequential navigation and browsing. Each tile’s
accessibility description included its type, item location
(row and column), and a hint if it was selected. Selection
in the reference implementation could be toggled using
the standard screen reader selection mechanism.

Among the participants’ solutions, almost all
differed from the reference implementation, except for
one (P8) that matched both in interaction and tile
description. However, one participant (P3) missed
updating tile descriptions after interacting with the game
board, rendering their implementation unplayable for
individuals with visual impairments due to a divergence

Page 2650



Participant
Age

Group
Programming

Experience
Unity

Experience
Uses Unity

Professional
P1 21-30 5-6 years less than 1 year no
P2 21-30 5-6 years 3-4 years no
P3 21-30 3-4 years 1-2 years no
P4 21-30 5-6 years 1-2 years no
P5 21-30 6+ years 3-4 years no
P6 21-30 6+ years 1-2 years no
P7 31-40 6+ years 5-6 years yes
P8 21-30 6+ years 1-2 years no
P9 31-40 1-2 years 3-4 years no

Table 1: Demography of the evaluation participants

in game state.
The remaining seven solutions diverged from the

reference but remained playable with closed eyes, as
per the participants’ requirements. However, there were
common issues: (1) Lack of Tile Location: Seven
out of nine solutions did not include tile locations,
making sequential navigation challenging. (2) Selection
State Ambiguity: In six out of nine solutions, it
was difficult to determine the selection state of a tile
solely by focusing on it with the screen reader. The
selection state could only be discerned by attempting
to select the tile and listening for an audio cue. (3)
Non-standard Selection Mechanism: Four out of nine
solutions implemented tile selection via a mouse click,
deviating from the screen reader-based interaction in the
reference implementation.

Where exactly the solution of each participant
differed from the reference can be seen in Table 2.

Limitations of the study can be seen in the small
sample size and the self-reporting of the questionnaires.
Also, it would be important to enlarge the study to a
more diverse set of test users.

6. Discussion and Conclusion

In this paper, we presented a roadmap and guidelines
to improve the accessibility of games for individuals
with vision impairments, based on the study of
relevant tools and background. We also developed
the UnityAccessibilityToolkit, a tool to help game
developers build visually accessible games with the
Unity game engine. Our evaluation showed that toolkits
can be an effective tool to make it easier to create
accessible games and that developers are open to adding
different accessibility features to their games if toolkits
or guidelines are available.

However, we found that many developers are simply
not aware of the necessity and possibility of adding such
features, which is a major open issue. Therefore, future

research should focus on two aspects: developing more
easy-to-use toolkits to make it as easy as possible for
developers to add accessibility features and increasing
awareness among developers about the necessity and
possibility of adding such features.

Regarding the UnityAccessibilityToolkit, future
work can include extending its capabilities to cover
other accessibility standards for games and creating new
tools. Additionally, increasing the appeal for developers
to make accessibility more relevant and visible to them
can further motivate them to create more accessible
games, especially indie game developers.

In summary, our research contributes to the
advancement of game accessibility by providing a
roadmap and guidelines for improvement and by
developing a useful toolkit for game developers. While
such a toolkit cannot make every game accessible and
probably not every kind of game is originally designed
or suitable for such as support, as many games rely on
small hints, visual atmospheres, or other cues, a major
contribution of this work should be to make it easier
for developers to try their best and especially increase
awareness. Further work should certainly experiment
more also with other elements than just screen reading,
such as haptic cues or other feedback. Summarizing,
we hope that this work will inspire more research and
development in this area and lead to the creation of more
accessible games for everyone to enjoy.

Page 2651



Solution

Visible to
Screen
Reader

Desc.
Includes

Type

Desc.
Includes
Location

Desc.
Includes
Selection

Desc.
Updates

Interactive
through

Screen Reader

Interactive
through
Mouse

Overall
Playable

Reference yes yes yes yes yes yes no yes
P1 yes yes no no yes no yes yes
P2 yes yes no yes yes
P3 yes yes yes no no no yes no
P4 yes yes no no yes no yes yes
P5 yes yes no yes yes no yes yes
P6 yes yes no no yes yes no yes
P7 yes yes no no yes yes no yes
P8 yes yes yes yes yes yes no yes
P9 yes yes no no yes yes no yes

Table 2: Visibility and accessibility description of the tiles in the different solutions.

References

AbleGamers. (2020). The ablegamers charity: Our
stories. AbleGamers. Retrieved January 15,
2021, from https://ablegamers.org/pages/our-
stories/

Allman, T., K. Dhillon, R., A. E. Landau, M., &
Hastuti Kurniawan, S. (2009). Rock vibe: Rock
band® computer games for people with no or
limited vision, 51–58. https://doi.org/10.1145/
1639642.1639653

Andrade, R., Rogerson, M. J., Waycott, J., Baker, S.,
& Vetere, F. (2019). Playing blind: Revealing
the world of gamers with visual impairment.
Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems,
116:1–116:14. https : / / doi . org / 10 . 1145 /
3290605.3300346

Atkinson, M. T., Gucukoglu, S., Machin, C. H. C.,
& Lawrence, A. E. (2006). Making the
mainstream accessible: Redefining the game,
21–28. https : / / doi . org / 10 . 1145 / 1183316 .
1183321

Calleja, G. (2010). Digital games and escapism. Games
and Culture, 5(4), 335–353. https://doi.org/10.
1177/1555412009360412

DOWINO. (2016). A Blind Legend. Retrieved December
18, 2020, from http://www.ablindlegend.com

EA Tiburon. (2020). Madden nfl 20. Retrieved
December 19, 2020, from https://www.ea.com/
games/madden-nfl/madden-nfl-20

Game Accessibility Guidelines. (2019). Ensure
screenreader support, including menus &
installers: Game accessibility guidelines.
Retrieved June 22, 2019, from http: / /game%
5C-accessibility%5C-guidelines.com/ensure-

screenreader - support - including - menus -
installers/

Harmonix. (2007a). Guitar hero.
Harmonix. (2007b). Rock band.
Naughty Dog. (2020). The Last of Us Part II. Retrieved

December 18, 2020, from https : / / www .
playstation . com / en - us / games / the - last - of -
us-part-ii/

NetherRealm Studios. (2019). Mortal kombat 11.
Retrieved December 19, 2020, from https : / /
www.mortalkombat.com

Norman, D. A. (2002). The design of everyday things:
Revised & expanded edition. Basic Books, Inc.

Porter, J. R. (2014). Understanding and addressing
real-world accessibility issues in mainstream
video games. SIGACCESS Access. Comput.,
(108), 42–45. https : / / doi . org / 10 . 1145 /
2591357.2591364

RARECSM. (2019). Sea of thieves: Configuring
‘let games read to me’ game transcription.
Microsoft Corporation. Retrieved October 2,
2020, from https : / / support . seaofthieves .
com / hc / en - gb / articles / 360022122074 --
Configuring-Let-Games-Read-to-Me-Game-
Transcription

Skizzix. (2009). Shredder Chess. Retrieved December
18, 2020, from http://skizzix.com/games-for-
iphone/shredder-chess/

Strasser, K. (2018). Subwords. Retrieved December 18,
2020, from http://subwords.app/

Strasser, K. (2021). Unity accessibility toolkit:
Enhancing accessibility of video games for
people with vision impairments. Master’s
Thesis.

Taylor, P. (2009). Text-to-speech synthesis. Cambridge
University Press. https : / / doi . org / 10 . 1017 /
CBO9780511816338

Page 2652



Thatcher, J. (1994). Screen reader/2: Access to os/2
and the graphical user interface. Proceedings of
the First Annual ACM Conference on Assistive
Technologies, 39–46. https://doi.org/10.1145/
191028.191039

Vice News. (2019). This is how to play video games if
you’re totally blind. Youtube. Retrieved June
13, 2019, from https : / / www. youtube . com /
watch?v=aX0oPwQPo9A

Yuan, B., & folmer eelke, e. (2008). Blind hero:
Enabling guitar hero for the visually impaired.
ASSETS’08: The 10th International ACM
SIGACCESS Conference on Computers and
Accessibility, 169–176. https : / / doi . org / 10 .
1145/1414471.1414503

Page 2653


