
Porting Computer Vision Models to the Edge for Smart City Applications:
Enabling Autonomous Vision-Based Power Line Inspection at the

Smart Grid Edge for Unmanned Aerial Vehicles (UAVs)

Ingi Steinn Gudmundsson
ETH Zurich

igudmunds@student.ethz.ch

Gregory Falco
Johns Hopkins University

University of Iceland
falco@jhu.edu

Abstract

Smart grid infrastructure must be monitored and
inspected - especially when subject to harsh operating
conditions in extreme, remote environments such as the
highlands of Iceland. Current methods for monitoring
such critical infrastructure includes manual inspection,
static video analysis (where connectivity is available)
and unmanned aerial vehicle (UAV) inspection. UAVs
offer certain inspection efficiencies; however, challenges
persist given the time and UAV operator skill required.
Collaborating with Landsnet, the Icelandic smart grid
operator, we apply convolutional neural networks for
image processing to detect smart grid transmission
infrastructure and modify the resulting computer vision
(CV) model to function on the edge of a UAV. In doing
so, we overcome significant edge processing barriers.
Our real-time CV model delivers decision insight on the
UAV edge and enables autonomous flight path planning
for use in smart grid inspection. Our approach is
transferable to other smart city applications that could
benefit from edge-based monitoring and inspection.

1. Introduction

In this paper we explore opportunities for smart city
asset monitoring using edge processing. Particularly, we
focus on the potential to monitor energy infrastructure
that includes smart grid components. Smart grids
make use of sensors to obtain information about the
status of the grid. They enable automation to ensure
reliability and availability of the system. Visual
inspections play a key role in order to assess the status
of power grids. These inspections are usually carried
out by operators on foot or by helicopter. Current
inspection methods face several challenges as they
can be time-consuming, dangerous for operators and
expensive. These challenges are a function of the
immense area the system covers, their remote locations,
hostile operating environments and the vast amounts
of complex components requiring inspection. Such

challenges are not exclusive to electric infrastructure,
but to other smart city critical infrastructure elements
such as bridges, tunnels and building inspections.

Certain geographies are more prone to inspection
challenges than others. Our study is being conducted
in partnership with Landsnet, the smart grid operator in
Iceland. Iceland is an island nation in the middle of
the Atlantic ocean that is subject to persistently high
winds and extreme weather. Energy infrastructure is
expensive and difficult to maintain in this environment
which prompts the need for automation of monitoring
solutions. Some regions of Iceland are largely
uninhabited and take hours to drive to over difficult
terrain; however, smart grid infrastructure passes
through these regions and they require the same extent
of monitoring and maintenance as grid components in
populated areas.

Unmanned aerial vehicles (UAVs), also called
drones, have been proposed as a solution to remote
monitoring problems as they offer a comparatively
low-cost and convenient means for monitoring remote
infrastructure assets[1]. UAVs can be controlled by
operators to fly along power lines and capture images
of the smart grid infrastructure for further analysis.
While this provides a means to collect data about the
state of the smart grid, it remains a relatively time
and human resource intensive process. Drone operators
generally collect image data without insight to where
defects may be found. This results in the collection
of a significant amount of video footage that requires
post-processing and analysis manually by an operator.
Essentially, trained technicians need to watch (hours of)
video footage taken by the UAV to detect subtle issues
with the transmission infrastructure. Communication
connectivity limitations in remote regions where such
smart grid infrastructure is found renders live data
streams back to an operations center infeasible. Parallels
can be made to other smart city assets that are difficult to
reach such as conducting bridge inspections over bodies
of water. Generally image data must be first collected
and stored on the edge and then physically brought back



for the manual analysis described. This prompts the
question: can real-time edge-based image processing be
used to facilitate autonomous UAV path planning that
enables remote smart grid infrastructure inspections?

For a fully automated inspection where the UAV
could autonomously fly along the inspection path
(the power line) and then detect specific problem
areas for the smart grid in real-time, optimized
algorithms and models will be required for edge
processing. Convolutional neural networks (CNNs),
a machine learning technique and form of artificial
intelligence (AI), have demonstrated strong results in
image processing but often require an extensive amount
of computing resources making them hard to use in
resource constrained environments such as UAVs. One
option to address the edge processing constraint is to
engage cloud based processing where the majority of
computations would be offloaded to remote computing
clusters and the results could be sent back to the UAV,
avoiding the resource constraints of the UAV. However,
due to the often remote locations of infrastructure,
where there is often limited or no connectivity, an edge
processing solution could be preferable. Efficient neural
networks have been proposed that could potentially help
serve the remote monitoring needs on the edge of a
UAV[2, 3]. In this paper we develop a CNN capable
of running onboard a UAV at the edge for real-time
decision insights such as path planning and smart grid
defect monitoring.

2. Prior Art

As transmission infrastructure ages and is tasked
with demands beyond their design parameters due
to increasing energy consumption, they are prone
to failures. Given the critical nature of energy
infrastructure and our society’s reliance on its 24/7
operations, rapid detection of issues relating to
transmission systems such as downed wires, fraying
electric cables or other anomalies is essential to enabling
fluid electric grid service. Degradation of energy
infrastructure becomes more common in the wake of
extreme weather and natural disasters, which have been
more severe and frequent in recent years due to climate
change [4].

Monitoring of transmission infrastructure has been
conducted in numerous ways. The most common
methods have remained unchanged for decades and
include visual surveys by foot and helicopter-assisted
inspection. Visual inspection by foot is carried out by a
team walking along the transmission line and inspecting
both the lines and towers with the help of binoculars, and
various cameras such as infrared and corona detecting

cameras. This method is time-consuming, costly
and dangerous for the maintainers but can provide
a higher detection rate than other methods. The
helicopter-assisted method is faster and requires less
labor-intensive work but generally has a lower detection
rate. The helicopter is flown along the line and a
maintainer visually inspects the line and gathers data
with cameras for further analysis. Even though this
method requires less manpower and time it is more
expensive compared to visual surveys by foot [5, 6].

With the introduction of smart grid data collection
techniques different strategies have been suggested to
monitor the status of the grid. Sensor networks have
been deployed to measure and monitor the health of
the system [7]. Different sensors such as temperature
and tilt sensors are placed on various assets of the grid
to detect mechanical failures and provide a complete
physical and electrical status of the system in real-time.
However, these networks come with challenges. One
of the main drawbacks of this approach is that the
sensors are static and thus the energy grids require a vast
amount of sensors placed along the system to properly
monitor it [8]. Further, in many cases there is need
for communication systems throughout the smart grid
to relay the data back to operators that analyze the
data[9]. Such remote communication systems, known as
mesh networks and offered by providers such as Silver
Springs Network, have been specifically developed for
smart grid infrastructure, but are not sufficient for high
throughput data transfer such as video data[10, 11].

With the advancements in recent years in deep
learning, namely, convolutional neural networks(CNN),
computer vision(CV) methods for visual inspection have
greatly improved. Previous work on the inspection
of smart city structures has focused on developing
CV models that require significant compute and
memory allocation. CV models are employed for
a variety of smart city applications ranging from
CCTV facial recognition for suspect identification to
roadside occupation detection for intelligent transport
services[12, 13]. However, challenges persist in
bringing these models to be performant on the edge,
enabling real-time decision insight. In most cases, fiber
optic communications links are needed for video feeds
to be communicated to locations where the data can
be processed. This limitation has presented challenges
for UAVs to conduct deep inspection of smart city
infrastructure [14].

Despite this limitation, in recent years UAVs have
gained attention as a potentially disruptive technology
to enable visual inspection of transmission systems[15].
Visual inspection for other infrastructure such as
buildings has been engaged for technical inspection[16].



UAVs are relatively low-cost, and easy to deploy - with
a primary cost being a skilled UAV operator. UAVs
can fly closer to the components of the transmission
system than helicopters resulting in more detailed
images of the components. They are typically equipped
with various sensors and cameras to gather data about
the status of the components and for navigation.
UAVs have been used for mapping and inspection of
transmission lines as well as vegetation encroachment
monitoring near transmission lines[17]. However, no
fully automatic autonomous vision-based inspection
system that is capable of detecting a wide range of faults
has been successfully developed but many task-specific
approaches exist for navigation and object detection [1].

A promising example of CV for smart grid
monitoring was developed by Nguyen et. al and is called
LS-Net where power lines were identified in energy
infrastructure images, which can inform operators of
transmission issues [18]. The intention was to identify
the transmission lines for indicators of deficiency and
so that the lines could inform a path ultimately fed
to a UAV for autonomous flight planning purposes.
The authors reported that it can detect power lines
from images in real-time on an NVIDIA TITAN X
GPU. LS-Net is a CNN inspired by single-shot object
detectors like SSD and YOLO. It consists of three
modules, a fully convolutional feature extractor based
on VGG-16, a classifier and a line segment regressor.
Instead of predicting the pixel level segmentation of
the power lines LS-Net splits the input image into
four overlapping grids and for each cell in the grid, it
predicts the probability that the cell contains a power
line segment and the coordinates of the endpoints of
the longest line segment in each cell. While the team’s
ambition was to feed power line image detection into
path planning waypoints for a UAV flight controller,
LS-NET is too processing intensive and as it currently
stands and is inoperable on edge GPUs.

Several approaches exist to compress neural
networks for edge applications. These include, weight
sharing, pruning, quantization, tensor decomposition,
and knowledge distillation[19]. Using these methods,
CV models have been demonstrated to operate on
UAVs, which could be informative for modifying the
LS-Net model so that it can work onboard a UAV. These
CV models specifically focus on fault identification on
the edge of the UAV. Medrano et al uses -Mobilenet
v1, a single shot detector CNN with Mobilenet as a
feature extractor to detect power masts in images[20].
They propose an algorithm to use this detector to point
a camera gimbal at the closest tower to maximize the
coverage of the tower for data collection based on
GPS coordinates of the UAV and the power mast. This

is done in real-time and on-board the UAV using a
TPU, the Google Coral USB Accelerator. Another
team that aimed to accomplish fault detection on the
edge includes Ayoub et al. They use the YOLOv3 and
YOLOv3-tiny models for real-time on-board detection
of power line components and faults[21]. They deploy
these models on 4 different single board devices(SBDs)
that can be embedded as part of an UAV i.e. Raspberry
Pi 4, Nvidia Jetson Nano, Nvidia Jetson TX2 and
Nvidia AGX Xavier. They then evaluate their real-time
performance on-board. They also use TensorRT from
NVIDIA, which is a deep learning inference optimizer,
to optimize the weights of the network after training and
compare the results. Leveraging Medrano and Ayoub’s
teams work on developing efficient CV to be performant
on edge devices such as the Jetson and Coral, we aim
to enable LS-Net’s features on the edge of the UAV as
originally intended by Nyugen et al. This can ultimately
yield real-time path planning waypoints to enable fully
autonomous inspections of smart grid infrastructure
using UAVs.

3. Our Approach for Edge CV Adaptation

The LS-Net model proposed by Nguyen served as
a base for our edge modification work. Since Nguyen
and team did not provide their implementation of the
network we implemented it using TensorFlow [22] and
Keras [23].

3.1. Data preprocessing

The training dataset we used in our experiments
is the newly released TTPLA dataset [24], which
contains aerial images of both transmission towers and
power lines and their pixel-level annotations for instance
segmentation in COCO format [25]. Since the output
of LS-Net is not the pixel-level annotations of the
power lines as described above, data preprocessing was
necessary. Additionally, we used the Ground Truth of
Powerline Dataset (Infrared-IR and Visible Light-VL)
[26] to further assess the robustness of the replicated
LS-Net model.

Our first step involved resizing the images to
512x512 to match the input size of the network. Then
we created labels from the segmentations of the images.
As previously mentioned, each image is split into four
overlapping grids. Each grid cell in these four grids
must include the class label, stating whether or not
the cell contains a line segment, and two coordinates
corresponding to the endpoints of the longest line
segment. Getting the class labels for the segmentations
is a trivial task where we just have to check if any
pixel in the cell is a line segment. However, collecting



the endpoints is more challenging. We achieved this
by taking each line segment in each cell, and fitting a
line to all the points that comprise the segment using
a weighted least-squares method. Then we create a
convex hull containing all the points on the line, extract
the points that form the convex hull and finally calculate
the Euclidian distance between each pair of points and
return the pair that is farthest apart. Calculating the
distance between all the points on a line is an expensive
task taking in general O(n2) time. Using the fact that
the two farthest points lie on the convex hull and that
we can obtain the convex hull in O(nlogn) time and
extract the points that form the convex hull we greatly
reduce the number of distance calculations we have to
perform since the number of points on the convex hull
is generally significantly less than all the points on the
line.

3.2. Model Characterization

In order to better understand the requirements and
measure the performance of the network we used several
benchmarks. Before we started the process of porting
the CNN to the edge we wanted to better understand
the computational cost, memory requirements and the
throughput of the network in frames per second (FPS).

Computational Cost: A common approach to
calculate the computational cost of a CNN is to count
the number operations performed during inference.
Multiply–accumulate operations (MACs) are the most
common operations during inference in convolutional
neural networks [27] and thus provide a sufficient
estimate of the computational cost. The formula we used
to count the number of MACs is:

MACs = K0 � K1 � Cin � Hout � Wout � Cout (1)

where K0 and K1 are the kernel width and height, Cin

is the number of input channels, Hout and Wout are the
height and width of the output feature map of the layer
and Cout is the number of output channels of the layer.

Memory requirements: Another important metric to
consider in resource constrained environments is the
total memory required for inference. In general the less
memory the model takes the faster it can run. To assess
the memory requirements of the models, we measured
the memory required to store the weights of the model
and the two largest consecutive feature maps. In doing
so, we further accounted for the CNN precision since
lower precision networks require less memory to store
their parameters.

Throughput: One of the most important
characterization metrics for computer vision is the
model throughput, measured in frames per-second

(FPS), of the network during inference. In order to
make decisions in real time for the UAV the model has
to be able to process its input in real time. We measured
the FPS by dividing the batch size by the average
execution time of 1000 batched inputs after warming up
the GPU for 100 inputs.

Evaluation metrics: To compare the performance of
the models and assess the effect of different shrinking
methods we calculated the pixel-level average recall
rate (ARR), precision rate (APR) and F1 score. Since
LS-Net does not output the pixel-level segmentation
maps we replicated the evaluation metrics used for
LS-Net for comparative purposes [18]. First, we apply
the 8-connected Bresenham algorithm to approximate
a straight line between the two endpoint predictions.
Then we smooth the segmentation by convolving a
2D Gaussian kernel over the maps. Finally, we use
Otsu’s method for thresholding to collect the binary
segmentation maps.

3.3. Porting CV to the Edge

To test our model on the edge we selected an edge
device that was capable of running our model, while still
being small enough to fit on an UAV. The Nvidia Jetson
Nano and the Google Coral Dev Board are small and
relatively inexpensive single-board computers that can
easily be mounted to the UAV for inference at the edge.
The Jetson Nano price is 99$ while the Coral is slightly
more expensive, costing roughly 169$.

The Nvidia Jetson Nano is a small single-board
computer. It is equipped with a Quad-core ARM A57
processor, 128-core NVIDIA Maxwell™ GPU capable
of 472 GFLOPs using half precision(FP16) and has 4
GB of 64-bit LPDDR4 memory[28].

The Google Coral Dev board is, like the Jetson
Nano, a single-board computer. It is equipped with
a i.MX8M system-on-chip which includes the ARM
Cortex-A53 processor, ARM Cortex-M4 processor,
Integrated GC7000 Lite Graphics GPU and 4 GB of
LPDDR4 SDRAM memory. However, unlike the Jetson
Nano the Google Coral Dev Board includes the Edge
TPU coprocessor for ML inference capable of 4 trillion
operations per second(TOPS) using 8 bit integer(INT8)
precision[29].

These devices have significant resource constraints
since they are built to be compact, efficient and
inexpensive. Additionally, they have limited support
for operations and precision. We ultimately selected
the Jetson Nano for our primary test system because it
provided slightly more flexibility for our model since
the Coral only supports INT8 precision. To speed
up inference on these devices the model needs to be



optimized for the system it is running on. To optimize
our network for the Jetson Nano we used TensorRT.

TensorRT is a high-performance neural network
inference optimizer and runtime engine. TensorRT
can optimize neural networks by combining layers
and optimizing kernel selection for improved latency,
throughput, power efficiency and memory consumption.
Additionally, it supports quantization to run inference
at lower precision. The Jetson Nano supports
half-precision floating point(FP16) numbers so we used
TensorRT to optimize the network for the Jetson Nano
and to quantize it to FP16 for increased performance
[30].

4. Results

Below we detail the outcomes from our effort to
modify the LS-Net model to be suitable on the Jetson
Nano edge device.

4.1. LS-Net

LS-Net is a fully convolutional neural network that
consists of 16 2D Convolutional layers followed by
a Group Normalization layer and a ReLU activation.
However, given TensorRT’s limited support we swapped
the Group Normalization for the more commonly used
Batch Normalization layer. Table 1 shows the high
level description of the architecture of the LS-Net. Each
Convolutional layer in the feature extractor is padded to
maintain the size of the input.

Input (512 � 512 � 3)
Conv 3 � 3 � 64
Conv 3 � 3 � 64

Conv 3 � 3 � 64 S2
Conv 3 � 3 � 128
Conv 3 � 3 � 128

Conv 3 � 3 � 128 S2
Conv 3 � 3 � 256
Conv 3 � 3 � 256

Conv 3 � 3 � 256 S2
Conv 3 � 3 � 512
Conv 3 � 3 � 512

Conv 3 � 3 � 512 S2
Conv 2 � 2 � 512 Conv 2 � 2 � 512

Conv 1 � 1 � 2 Conv 1 � 1 � 4

Table 1. LS-Net architecture

4.2. Model Modification

Since the Jetson Nano has limited capabilities we
sought to compress the model to increase its throughput.

We ended up with two variants of the original LS-Net
that we call Tiny LS-Net and Tinier LS-Net. Table 2
shows the high level architecture of the Tiny LS-Net.
The main difference between the original and the tiny
version is that we utilize 1 � 1 convolutions to reduce
the number of channels in the models that resultantly
reduces the computational complexity.

Input (512 x 512 x 3)
Conv 3 � 3 � 64

Conv 3 � 3 � 64 S2
Conv 3 � 3 � 128
Conv 1 � 1 � 64

Conv 3 � 3 � 128 S2
Conv 3 � 3 � 256
Conv 1 � 1 � 128

Conv 3 � 3 � 256 S2
Conv 3 � 3 � 512
Conv 1 � 1 � 256

Conv 3 � 3 � 512 S2
Conv 1 � 1 � 256 Conv 1 � 1 � 256
Conv 2 � 2 � 512 Conv 2 � 2 � 512

Conv 1 � 1 � 2 Conv 1 � 1 � 4

Table 2. Tiny LS-Net architecture

To reduce the size of the model even further we
also tried halving the number of channels in every
convolutional layer except for the last layer. This
resulted in the tinier variant which has a much greater
throughput than both the previous versions.

Input (512 x 512 x 3)
Conv 3 � 3 � 32

Conv 3 � 3 � 32 S2
Conv 3 � 3 � 64
Conv 1 � 1 � 32

Conv 3 � 3 � 64 S2
Conv 3 � 3 � 128
Conv 1 � 1 � 64

Conv 3 � 3 � 128 S2
Conv 3 � 3 � 256
Conv 1 � 1 � 128

Conv 3 � 3 � 256 S2
Conv 1 � 1 � 128 Conv 1 � 1 � 128
Conv 2 � 2 � 256 Conv 2 � 2 � 256

Conv 1 � 1 � 2 Conv 1 � 1 � 4

Table 3. Tinier LS-Net architecture

4.3. Model Characterization

Table 4 depicts the benchmark results for the three
different variants. The number of parameters, number




