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ABSTRACT

Waste effluent injected into an aquifer saturated with denser ambient
brackish or salt water experiences a buoyant lift. As a result~ the efflu­
ent migrates both outward from the well ar~ upward in response to the com­
bined effects of injection head and buoyant force. After the injection
process has begun~ several phenomena can affect the density~ shape~ and
distribution in space and time of the resulting buoyant plume. The most
important of these include convection and mechanical dispersion and molecu­
lar diffusion.

Previous sandbox and Hele-Shaw laboratory modelling work have provided
a basic qualitative understanding of buoyant plume movement in a porous
medium. However~ these laboratory models cannot correctly simulate disper­
sion phenomena which may have significant effects on buoyant plume movement
and distribution. Consequently~ it is necessary to mathematically model
the problem using coupled sets of partial differential equations which take
into account the effects of dispersion and diffusion~ as well as convection.
For this problem~ there are four unknowns (density~ concentration> velocity~

and pressure)~ requiring four equations. The four governing equations are:
a motion equation (Darcy's law)~ a continuity equation~ a dispersion equa­
tion~ and an equation of state. In addition~ boundary and initial condi­
tions must be stipulated. In this study~ two sets of boundary conditions
are used: the first consists of conditions identical to those in the sand­
box model studies~ and the second models the geology of a specific prototype
area. The resulting governing equations and boundary and initial conditions
are numerically solved by both the finite difference and the finite element
methods. Finally~ the numerical models are calibrated with the results of
the sandbox model studies mentioned previously.

This report describes in detail formulation of the governing equations
and the initial and boundary conditions~ and preliminary finite difference
modeZling work compZeted to date.
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I NTRODUCTI ON

Background

In Hawai'i, liquid wastes are often disposed of by subsurface injection
into the brackish or saline groundwater body which underlies the Ghyben­
Herzberg fresh groundwater lens. This method of waste disposal has become
fairly commonplace in the past five years with upwards of 170 injection wells
now in operation. Injection of waste into the Hawaiian Ghyben-Herzberg lens
system presents unique problems because the waste effluents normally are in­
jected into the density-stratified water underlying the freshwater lens.
These effluents commonly have a density close to that of fresh water so that
the effluent experiences a buoyant uplift superimposed upon any ambient
groundwater flow effects. This situation'produces a problem with highly com­
plicated boundary conditions which has yet to be theoretically or numeric?lly
solved.

The Hele-Shaw (Williams 1977) and sand-packed hydraulic model studies
(Wheatcraft, Peterson, and Heutmaker 1976; Heutmaker, Peterson, and Wheat­
craft 1977) conducted at the University of Hawaii Water Resources Research
Center have provided a basic qualitative understanding of buoyant plume move­
ment in a porous medium. However, the Hele-Shaw and sand-packed hydraulic
models are not able to correctly simulate dispersion phenomena which may
have significant effects on plume movement and distribution in a prototype
situation (this is explained fully in the section entitled "Description of
the Injection Process"). As a result, it is necessary to model mathematic­
ally the problem using coupled sets of partial differential equations with
specified boundary and initial conditions.

Objectives

The purpose of this study is to achieve an understanding of the process
of liquid waste injection in Hawai'i through use of mathematical modelling.
Many important questions remain to be answered regarding injection into
density-stratified aquifers. Some of the important questions to be examined
in this study include:

1. What is the extent and distribution of plume migration in three­
dimensional space and time?

2. How significant are the effects of mechanical dispersion and molec-
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ular diffusion on the effluent plume?

3. What are the relative effects of convection by buoyant force versus

convection by injection pressure gradients and to what extent do

each of these terms contribute to the total flow regime?

Several specific problems are of particular interest for the Hawaiian situa­

tion. Each case has its own unique boundary and initial conditions. The

details of these specific cases are outlined in the section entitled "Bound­

ary and Initial Conditions."

In order to answer the questions described above, the physical situation

is stated in terms of the appropriate set of governing equations and boundary

and initial conditions. The resulting equations are then solved numerically

by the finite element method.

Finally, the numerical model calibrated against existing data. Ideally,

the calibration procedure would involve using extensive field data collected

over a period of years; however for Hawai1i, no· such data exists. The numer­

ical model will therefore be calibrated with the results of the sand-packed

hydraulic model studies previously mentioned.

MATHEMATICAL FORMULATION
Description of the Injection Process

Waste effluent injected into an aquifer saturated with denser ambient

brackish or salt water experiences a buoyant lift. The effluent then mi­

grates outward from the well and upward in response to the combined effects

of injection head and buoyant force; this is referred to as a buoyant plume.

The initial strength of the buoyant effect is dependent upon the initial

density difference between the injected effluent and the ambient groundwater.

After the injection process has begun, several phenomena can affect the den­

sity, shape, and distribution in space and time of the buoyant plume. These

phenomena include convection, mechanical dispersion, molecular diffusion,

Rayleigh-Taylor instabilities, entrainment, aquifer elasticity, fluid-aquifer

interactions (both geochemical and biological), and change of density as a

function of pressure.

Wheatcraft, Peterson, and Heutmaker (1976) showed that in a sand-packed

hydraulic model, the most important mechanism of mass transport is mass dis­

placement by convection. Mechanical dispersion and molecular diffusion did
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not significantly influence the plume concentration distributions. However,

in a Hawaiian prototype aquifer, a representative elementary volume generally

is much larger than that of sand ina laboratory model due to the nonhomoge­

neous nature of the aquifer. The coefficient of hydrodynamic dispersion is,

therefore, much larger for the prototype and this difference cannot be scaled

for purposes of similitude modelling (Bear 1977). Therefore, a mathematical

model of the problem must take into account the effects of hydrodynamic dis­

persion and molecular diffusion so that an accurate picture can be formulated

regarding the relative importance of the dispersion, diffusion, and convec­

tion terms in the equations.

For this problem, there are four unknowns, density (p), concentration

(~), velocity (q), and pressure (P), requiring four equations. The four

equations are:

Motion equation (Darcy's law),

k
q = ::: ('1P + pg'lz)
- 1.1

Continuity equation,

'V • (p~) + PoQ* (x*')

Dispersion equation,

I
I
a(np)

= - at

(1)

(2)

ac
q • '1C + -- = 'V • (Dh'lC)- at 'Z

Equation of state,

P = Po[l + S (C - Co) + S (P - Po)} .c p

(3)

(4)

In equation (2), PoQ*(x*) represents a source or sink located at the point

x* in the flow domain with a pumping or injection rate Q* (with positive or

negative sign for respective pumping or injection). The term PoQ*(x*) is

defined as:

PoQ*(x*) a
[n .... t mpaY + PDf! qdA]d(x - x., y - y.)o _ ~ ~

(5)

where a =Dirac delta function and (x., y.) are the coordinates of the pump-
~ ~

ing or injection well.

Equations (1) through (5) are a generalized form of the total differen­

tial statement of the problem. Now it is necessary to discuss the exact

physical conditions, geometry, approximations, and assumptions for the

I
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kx ~ kz ~ 0.01 kx '

6. Changes in density and viscosity caused by varying salt concentra­

tion do not significantly affect the hydraulic conductivity. The hydraulic

conductivity is, therefore, a second-rank tensor that is constant with re­

spect to space and time, but directional in nature such that:

~ = [~x ~y ~ 1= [~x '~x ~ 1
o 0 k 0 0 kz z- -

(7)

where the coordinate axes are taken to be the principal directions. This

assumption introduces a slight error because the lava flow beds dip at an

angle of about 70 to 9 0 from the horizontal. This causes the principal di­

rections to be tilted at the same angle, 70 to 90 from the coordinate axes.

This error is relatively small compared to the precision to which values for

the hydraulic conductivity are known and will, therefore, be ignored.

7. Although the tensor nature of the hydraulic conductivity is well

understood for the general anisotropic porous medium, this is not the case

for the coefficient of hydrodynamic dispersion (D
h
.. = D). Dh .. is known to
1-J::: 1-J

be a second rank tensor even in isotropic media with principal directions

everywhere orthogonal to the average velocity. However, the exact form of

the function of D
h

.. for anisotropic porous media is not well known and there
1-J

has been very little work done in this area (Bear 1977). Therefore, for the

purposes of this study, it is necessary to assume that the porous media is

isotropic with respect to hydrodynamic dispersion, even though it is being

treated as anisotropic with respect to permeability. For isotropic media,

\"here

and

V·V·- 1-J
D •• = at va. . + (a. - at )---1-J 1-J 1- V

Da*·· = Da T-J;.1-J 1-J

(8.1)

(8.2)

(8.3)

The tortuosity (T-J;.) is related to the porous medium's intrinsic permeability
1-J

and is a second-rank tensor. However, it reduces to a scalar (unlike the

dispersion coefficient) in an isotropic medium. Since the tortuosity is

being used here in an isotropic treatment of dispersion, it may be considered
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Hawaiian system and to rewrite accordingly equations (1) through (5).

Imposed Conditions~ Approximations, and Assumptions·

Some conditions must be imposed that complicate the mathematical state­

ment of the problem, i.e., retain generality, in order to achieve more real­

istic and accurate answers in light of the real physical situation. These

conditions are addressed first, then simplifying assumptions and approxima­

tions will be presented.

1. Formation of buoyant plumes in an ambient groundwater flow regimes is

transient and three-dimensional in nature. One of the most important questions

to be addressed in this study is: how wide (horizontally) is the plume at some

point of interest downgradient, e.g., the coastline, in an ambinet flow field;

and, how long after injection does it take for a specified concentration of

the plume to reach the coastline from the point of injection? The horizontal

and vertical distributions of effluent plume concentrations, therefore, re­

quire the use of a transient, three-dil1!~nsional set· .of equations.

2. In the formulation of the groundwater quality problem, P = P(G, P)

and the right-hand side of equation (2) becomes:

a(nP) an. ap ~ ap ae
at = Pfi + nap at + nac at (6)

3. The porous medium will be assumed to be nondeformab1e, thus elimin­

ating the term p(an/at) from the right-hand side of the continuity equation

(eq. 6).

4. Fluid density variations are only a function of concentration. This

approximation is valid because density variations due to concentration are

much larger than either density variations due to pressure or variations with

respect to space.

5. In Hawai'i, the aquifers are known to be anisotropic in the x-z

plane, with k~ > k. Estimates of the ratio k > k generally range from 10
w z x z

to 100. Although no quantitative work has been done to determine this ratio,

anisotropy must be taken into account when dealing with the x-z (vertical)

plane since it has the potential of affecting both dispersive and bulk mass

transport. Any anisotropy that exists in the horizontal plane is probably

small compared to that in the vertical plane and can generally be ignored.

Therefore k - k will be assumed and solutions will be obtained for 0.1x y
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a scalar.

8. Injection will take place from a line source rather than from a

point source. A line source is numerically simulated by a series of closely

spaced point sources.

Governing Equations

With the above considerations, the governing equations (1-4) reduce to

the following:

Darcy's law,
(9.1)

(9.2)

(9.3)

Continuity equation,

~ dqz Q*( *)
dy + dZ + x (10)

Dispersion equation:

de
q • VC + at = v • (~VC)

dC
Dyzaz )

ac
Dzzaz )

or,
dC + dC de a (D ac .ac ac

qxax qYay + qzaz = a:x; xxax + Dxyay + Dxzaz )

a ac dC
+ ay (Dyxax + Dyyay +

a . dC dC
+ -az(Dzxdx + Dzydy + (11)

Equation of state,

These are the equations which must be solved by the numerical scheme.

However, in order to complete the mathematical statement of the problem, it

is necessary to stipulate the boundary and initial conditions.

Boundary and Initial Conditions

Two separate sets of boundary conditions will be examined. Case I will

consist of injection into the caprock of very simple geometry, so that the
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boundary and initial conditions are identical to those in the sand-packed

hydraulic model studies. Case 2 will be similar to case 1, except with ir­

regular geometry that closely models the geology of a specific area. Use of

the finite element method will easily allow for widely varying geometries

without re-formulation of the numerical algorithms and more cases will be

studied if time permits. Boundary conditions are, in effect, reduced to

input data for the finite element program.

CASE 1. The initial conditions for case 1 are (see Fig. 1):1

c = C(z,O) (13.1)

P = P(z,O) z..... f pg dz + Po
zo,

(13.2)

(O,O,Zi)

Equation 13.1 is not a function which can be analytically determined,

but rather it is a set of ordered pairs of numbers (C,z) that defines the

transition zone curve for a particular field (or laboratory model) situation.

Hence 13.2 can be determined from 13.1 because p is strictly a function of C.

Z

t

Well

ocean

h

//y /~
// /'

/' ~

J-L- ~/'-/----------~~-~X
I~ L ---i~~1 .

FIGURE 1. BOUNDARY CONDITIONS FOR CASE 1, INJECTION INTO
CAPROCK WITH SIMPLE GEOMETRY

Irhe notation used in the following section is: f = f(x,Y,z,t). A missing
parameter indicates that f is not a function of that parameter. A parameter
(x,y,z or t) replaced with a constant indicates that the replaced parameter
is held constant at the particular value while other parameters vary over
their normal range.
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The boundary conditions for case 1 are as follows (see Fig. 1):

ClC ClC
Clz(X,y,O) = Clz(x,y,h) = 0

ClC ClC
ay(X,O,Z) = Cly(X,W,Z) = 0

C(-L,y,z) = Cs

C(L,y,z) = C(z)

ClP
Cly(X,O,Z) = 0

~pz· =. '(x w·z)~: = 0'o ." . ' .

ClPaz(x,y,O) = -p(x,y,O)g

ClPdz(x,y,h) = -p(x,y,h)g

P(-L,y,z) z= -gJ p (-L,y ,z)dz + Po ,-LZo

P(L,y,z) z
(L,y,z)dz + Po,L= -gJ

Zo

(14.1,2)

(14.3,4)

(14.5)

(14.6).

(14.7)

(14.8)

(14.9)

(14.10)

(14.11)

(14.12)

CASE 2. In Hawai'i, injection usually takes place in the coastal cap­

rock aquifers such as the injection well facility at the Waimanalo Sewage

Treatment Plant on 0' ahu.Figu;re 2 is a cross section of a hypothe.tical

coastal caprock aquifer. The functions ~l, ~2, and ~3 can be designed to

specify boundary surfaces for a particular geometry based on known geologic

information for an injection well facility. The initial conditions for case

2 are:

C = C(x,y,z,O)

P = P(x,y,z,O)

The boundary conditions are:

ClC dC
Cly(x,O,z) = Cly(x,OO,z) = 0

(15.1)

(15.2)

(16.1, . 2)

(16.3,.4)
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in Contact with Ocean,
S3(X,Y)

Confining Layer,
Sl (X, Y)

--------------------------------~----------------------------_.---------------------------------------------------------------

~===i==========~========~====0=~~==~~~=c==~:::.::.========_==========~Note: Sl ranges from Ato B
~=============~~========~=~============~==~==~======~====~=======:::-==i=~=~ S2 ranges from B to C
E=3=====3===S===3===3=======:=3=====3==.:§=3=3=3=~~~~::E=B:E===E===S===3==::E==~ z.;3 ranges from Cto A

FIGURE 2. BOUNDARY CONDITIONS FOR CASE 2, CAPROCK WITH IRREGULAR GEOMETRY

C(z.;3) = Cs

ap (z.;l) = 0
an

ap
0an(z.;2) =

P(z.;3)
z= -gf p(z)dz + p

zo 0, z.; 3

(16.5)

(16.6)

(16.7)

(16.8) .

PROGRESS REPORT AND FUTURE WORK

The equations and boundary conditions for case 1 have been formulated

into a numerical algorithm with the finite difference method (FDM). It was

decided to solve case 1 with the FDM before a finite element solution was

achieved. Thus, the answers from the finite difference program would provide

a check for the finite element program. The solution procedure used in the

finite difference program was the alternating direction implicit (ADI) method
- ...

(Fig. 3 is a flow chart for the ADI method). Some difficult problems were

encountered during the coding of the combined motion-continuity equation.

As can be seen from the flow chart, the program outputs concentrations, pres­

sures, and velocities as a function of time and space. At the present time,

only concentration and pressure distributions without the effects of ambient
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(""--__STA_RT__)

!
INPUT INITIAL

CONDITIONS INTO C,P,U,
AND V ARRAYS

k+k+~

(k IS THE TIME STEP;
EQUAL INITIALLY

TO ZERO

1

CALCULATE
CONCENTRATION

ALONG ROWS.
PARTIALS WITH RESPECT

TO X ARE IMPLICIT

CALCULATE PRESSURE
ALONG COLUMNS.

PARTIAL WITH RESPECT
TO l ARE
IMPLICIT•

CALCULATE
CONCENTRATION
ALONG COLUMNS •.

PARTIALS WITH RESPECT
TO l ARE IMPLICIT.

CALCULATE
PRESSURES

ALONG ROWS.
PARTIALS WITH RESPECT

TO X ARE IMPLICIT.

USING k +1 VALUES FOR
C AND P, CALCULATE
VELOCITIES FOR k +1

TIME STEP.

/

. PRINT C,P,U,V AND /
k + 1 TI ~'1E STEP

HAVE ALL YES
USING k + ~ VALUES FOR TIME STEPS BEEN ( STOP )

C AND P, CALCULATE CALCULATED
VELOCITIES FOR k + ~ . ?

TIME STEP.
NO

,
I GO TO 1 I

k+k+1

FIGURE 3. FLOW CHART FOR ALTERNATING DIRECTION IHPLICIT (A.D.I.) ALGORITHM
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f10\'l' are available, and Figures 4 and 5 illustrate the general nature of

the concentration outpus. Figure 4 illustrates the effects of molecular

diffusion on the transition zone as a function of time in the interior of

the model (75 cm from the ocean). Figure 5 illustrates the effects of mo­

lecular diffusion fron! the ocean on the freshwater lens as a function of

distance inland from the ocean. Concentrations at the initial conditions

90

80

70

Distribution of total dissolved sol ids in the sandbox
mode 1 as computed by the numer i ca 1 mode 1 (w i thout
ambient flow)

E
~ 60
:r:
I­
a..
w
o 50
-J
W
o
o
~

I 40
N

30

20

10

t=36

0'-----'---'-_-'-------L_---L_-'----_'------'-_--'--_-'------'_--L_....1-_'------'-_-L._-'-----U
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

COMPUTED CONCENTRATI ON OF TOTAL DISSOLVED SOLI DS (9/£)

FIGURE 4. EFFECT OF DIFFUSION ON THE TRANSITION ZONE

I
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100
~, '\

I Distribution of total dissolved
90 \ I sol ids in the sand-box model

\
after 36 hr of sand-box model

I time as computed by the numeri-

\ I
cal model (without ambient

80 flow)

\ I
70 \ I

\ I
60 \ \

~ ." \
E "-. "-u

---- ~ '----
::c 50 ~~ ---------
I- --0... - ::::--..w

~Cl

~....J
W 40 ~Cl
a
~

\I
N

30 ------ 2.0 cm from ocean I
2. 1 cm from ocean------ 4. 1 cm from ocean
6. 1 cm from ocean

20

10

OL-----'-_-'-_-'------'L----L_-'-_.L.----I._-'-_..L.-_L---L_-'-_.L.----I._-'-_-l---I
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

COMPUTED CONCENTRATION OF TOTAL DISOLVED SOLIDS (gm/~)

'FIGURE 5. EFFECT OF DIFFUSION FROM THE SEA ON THE FRESH WATER LENS

were computed artificially to represent an average concentration distribu­

tion that was measured as an initial condition in the sand-box model. Sin­

gularities in the coefficient matrix were encountered due to certain curious

relationships between the boundary conditions and the ADI method itself.

These problems have nearly been solved and complete results for case 1 will

shortly be available. In addition, work has also begun on the solution of

case 1 by the finite element method (FEM). George Pinder, of Princeton
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University, has supplied a FEM code which provides automatic mesh genera­
tion and efficient matrix solving routines for coupled sets of transient
nonlinear three-dimensional partial differential equations. Using the
method of weighted residuals, systems of matrix equations will be generated
from the governing equations and boundary conditions. Subroutines that
generate these matrix equations will then be coded and used as input to the
program provided by Pinder. Using this program will save time during the
developmental stage since matrix solving routines and generation of system
topology (the character of the finite element mesh) are common to all FEM
problems.



14

REFERENCES CITED

Bear J. 1972. Dynamics of fluids in porous TflBdia. New York: AmericanElsevier.

Heutmaker, D.L.; Peterson, P.L.; and Wheatcraft, S.W. 1977. A laboratorystudy of waste injection into a Ghyben-Herzberg groundwater system underdynamic conditions. Tech. Rep. No. 107, Water Resources Research Center,University of Hawaii.

Wheatcraft, S.W.; Peterson, P.L.; and Heutmaker, D.L. 1976. Waste injectioninto a Hawaiian Ghyben-Herzberg aquifer. Tech. Rep. No. 96, Water Re­sources Research Center, University of Hawaii.

Williams, J.A. 1977. Well injection into a two-phase flow field: A Hele­Shaw model investigation. Tech. Rep. No. 108, Water Resources ResearchCenter, University of Hawaii.



15

APPENDIX: BIBLIOGRAPHY OF APPLICABLE REFERENCES

FINITE ELEMENT METHOD (FEM)
Monographs

(Introductory texts, mathematical theory and background)

Aubin, J. -P. 1972. Approximation of eUiptic boundary-value problems. New
York: Wiley Interscience.

Azi z, A. K. ,ed. 1972 . Symposium on mathematical foundations of the finite
element method with applications to partial differential equations. New
York: Academic Press.

Brebbia, C.A., ed. 1975. Mathematical models for environmental problems.
Proceedings of the International Conference, 8-12 September 1973, at
University of Southhampton, England. New York: Wiley.

, and Connor,J.J., eds. 1973. Numerical methods in fluid dynamics.
-----,=-Proceedings of the International Conference, 26-28 September 1973, at

University of Southampton, England. New York: Crane, Russak.

de Boor, C., ed. 1974. Symposium on mathematical aspects of finite elements
in partial differential equations. Proceedings of the Mathematical Re­
search Center Symposium, 1-3 April 1974, at University of Wisconsin.
New York: Academic Press.

Desai, C.S., and Abel, J.F. 1972. Introduction to the finite element method.
New York: Van Nostrand Reinhold.

Gallagher, R.H., ed. 1974. Finite elements in fluids. International Con­
ference on the Finite Element Method in Flow Analysis, at University
College of Wales, 2 vols. London: Wiley.

Gray, W. G.; Pinder, G. F.; and Brebbia, C.A., eds. 1977. Finite elements 'kn
water resources. London: Pentoch Press.

Heubner, K. 1975. The finite element method for engineers. New York:
Wiley.

Martin, H.C., and Carey, G.F. 1973.
lyses: Theory and app lication.

Introduction to finite element ana-­
New York: McGraw-Hill.

Norrie, D.H., and deVries, G. 1973.
tals and applications. New York:

The finite element method:
Academic Press.

Fundamen-

Oden, J.T. 1972. Finite elements of non linear continua. New York: McGra\'1­
Hill.

Pinder, G.F., and Gray, W.G.
and subsurface hyiJ:r>ology.

1977. Finite element simulation in surface
New York: Academic Press.

Prenter, P.M. 1975. Splines and variational methods. New York: Wiley In­
terscience.



16

Robinson, J. 1973. Integrated theory of finite element methods. New York:Wiley Interscience.

Schultz, M.H. 1973. SpZine analysis. Englewood Cliffs, N.J.: Prentice­Hall.

Smith, G.N. 1971. An introduc-cion to matrix and finite element methods incivil engineering. Essex, England: Applied Science Publishers.

Sorensen, M., ed. 1969. Symposium on finite element techniques. Institutfur Statik und Dynamik de Luftung Raumfahrt-Konstruktionen, Universityof Stutgart, Germany.

Strang, W.G.,and Fix, G.J.
Englewood Cliffs, N.J.:

1973. An analysis of the finite element method.
Prentice-Hall.

Wachspress~ E.L. 1975. A rational finite element basis. New York: Academ­ic Press.

Whiteman, J.R., ed. 1972. The mathematics of finite elements and applica­tions.Proceedings of the BruneI University Conference of the Instituteof Mathematics and its Applications, April 1972. New York: AcademicPress.

Zienkiewicz, D.C. 1971. The finite element method in engineering science.New York: McGraw-Hill.

FEM General Articles

Babuska, I. 1974. Solution of problems with interfaces and singularities.In Symposium on Mathematical Aspects of Finite Elements in PartialDifferential Equations. New York: Academic Press.

Cheng, R.T. 1974. On the accuracy of certain CO continuous finite elementrepresentations. Int. J. for Numer. Meth. in Eng. 8(3):649-57.

Connor, J., and Will, G. 1969. Computer-aided teaching of the finite ele­ment displacement method. Res. Rep. 69-23, p. 36, School of Engineering,Massachusetts Institute of Technology, Cambridge, Mass.

Desai, C.S., and Lytton, R.C. 1975. Stability criteria for two finite ele­ment schemes for parabolic equations. Int. J. for Numer. Meth. in Eng.9 (3): 721-26.

George, J.A. 1972. On the density of finite element matrices. Int. J. forNumer. Meth. in Eng. 5(2):297-302.

Irons, B.M., and Razzaque, A. 1972. Experience with the patch tests forconvergence of finite elements. In Symposium on mathematical foundationsof the finite.element method with applications to partial differentialequations. New York: Academic Press.



Silvester, P. 1972.
holtz equation.

17

Tetrahedral polynomial finite elements for the Helm­Int. J. fop Numep. Meth. in Eng. 4(3):405-14.

Szabo, B.A., and Chung-TaTsai.
the finite element method.
82.

1972. The quadratic programming approach to
Int. J. fop Numep. Meth. in Eng. 5(2):375-

Taylor, R.L.
analysis.

1972. On completeness of shape functions for finite elementInt. J. fop Numep. Meth. in Eng. 4(1):17-22.

de Veubeke, B. 1974. Variational principles and the patch test. Int. J.fop Numep. Meth. in Eng. 8(4):783-802.

Zienkiewicz, O.C., and Parekh, C.J. 1970. Transient field problems: Two­dimensiorial and three-dimensional analysis by isoparametricfinite ele­ments. Int. J. fop Numep. Meth. in Eng. 2(1):61-72.

FEM Fluid Flow, Navier-Stokes Equations

Argyris, J.H.; Mareczek, G.; and Scharpf, D.W. 1969. Two and three­dimensional flow using finite elements. J. Roy. Aepon~ Soc. (Eng.) 73:961-64.

Baker, A.J. 1973. Finite element solution algorithm for viscous incompres­sible fluid dynamics. Int. J. fop Numep. Meth. in Eng. 6(1):89-103.

Boisserie, J.M. 1971. Generation of two and three-dimensional finite ele­ments. Int. J. fop Numep. Meth. in Eng. 3(3):327-48.

Cheng, R.T. 1972. Numerical solution of the Navier-Stokes equations by thefinite element method. Phys. fluids 15(12):2098-2105.

Cheng, R.T. 1972. Numerical investigation of lake circulation around is­lands by the F.E.M. Int. J. fop Numep. Meth. in Eng. 5:103-12.

Kawahara, M.; Toshimura, N.; Nakagawa, K.; and Ohsaka, H. 1976. Steady andunsteady finite element analysis of incompressible viscous fluid. Int.J. fop Numer. Me-th.in Eng. 10(2) :437-56.

Thompson, E.G., and Haque, M.r. 1973. A high order finite element forcompletely incompressible creeping flow. Int. J. fop Numep. Meth. inEng. 6(3):315-22.

FEM Potential Flow

Isaacs, L.T. 1973. A curved cubic triangular finite element for potentialflow problems. Int. J. fop Numep. Meth. in Eng. 7(3):337-44.

Meissner, U.
problems.

1973. A mixed finite element model for use in potential flowInt. J. fop Numep. Meth. in Eng. 6(4):467-74.



18

FEM Heat Conduction

Bruch, J.C., Jr., and Zyroloski, G. 1974. Transient two-dimensional heatconduction problems solved by the finite element method. Int. J. forNumer. Meth. in Eng. 8(3):481-94.

Donea, J. 1974. On the accuracy of finite element solutions to the trans­ient heat-conduction equation. Int. J. for Nwner. Meth. in Eng. 8(1):103-10.

FEM Diffusion, Convection

Cheng, R.T. 1974. On the study of convective dispersion equation. Finiteelement methods in fl()1J) problems. Alabama, University of Alabama Press,pp. 29-47.

Guymon, G.L.; Scott, and Herrmann, L.R. 1970. A general numerical solutionof the two-dimensional diffusion-convection equation by the finite ele­ment method. Water Resour. Res. 6(6):161l~17.

Mercer, J;W., and Pinder G.
of hydrothermal systems.
54(4):263.

1972. Finite element approach to the modelling
Abstr. EOS. (Trans. Am. Geophysical Union)

Price, H.S.; Cavendish, J.C.; and Varga, R.S. 1968. Numerical methods of
higher~order accuracy for diffusion-convection equations. Soc. Petrol.Eng. J. 8(3):293-303.

Wang, M.S., and Cheng, R.T.S. 1975. A study of convective-dispersion equa­tion by isoparametric finite e1ements.J. Hydrol. 24:45-56.

FEM Porous Media

Cheng, R.T., and Li, C.Y. 1973. On the solution of transient free-surfaceflow problems in porous media by the finite element method. J. Hydrol.20:49-63.

Gambo1ati, G. 1975. Use of the over-relaxation technique in the simulationof large groundwater basins by the finite element method. Int. J. forNumer. Meth. in Eng. 9(1):219-34.

Ghaboussi, J., and Wilson, E.L. 1972. Flow of compressible fluid in porouselastic media. Int. J. for Numer. Meth. in Eng. 5(2):419-42.

Javandel, I., and Witherspoon, P.A. 1968. Application of the finite elementmethod to transient flow in porous media. Soc. Petrol. Eng. J. 8(3):241-52.

Larock, B.E., and Taylor, C. 1976. Computing three-dimensional free surfaceflows. Int. J. for Nwner. Meth. in Eng. 10(5):1143-52.



19

Lewis, R.W., and Garner, R.W. 1972. A finite element solution of coupledelectrokinetic and hydrodynamic flow in porous media. Int. J. forNumer. Meth. in Eng. 5(1):41-56.

; Norris, V.A.; and France, P.W. 1975. Finite element analysis of the---motion of a gas-liquid interface in a porous medium. Int. J. for Numer.Meth. in Eng. 9(2):433-48.

Mei, C.C., and Chen, H.S. 1976. A hydrid element method for steady linear­ized free-surface flows. Int. J. for Numer. Meth. in Eng. 10(5):1153-77.

Neuman, S.P., and Witherspoon, P.A. 1970. Variational principles for con­fined and unconfined flow of groundwater. Water Resour. Res. 6(5):1376-82.

, and 1971. Variational principles for fluid flow in porous--m-·edia. --=J~.-E::::ng. Mech. Div.~ Am. Soc. Civ. Eng. 97(2):359-74.

Pinder, G.F., and Cooper, H.H., Jr. 1970. A numerical technique for calcu­lating the transient position of the saltwater front. Water Resour. Res.6(3):875-82.

1973. Simulation of groundwater contamination using a Ga1erkin F.E.Technique. In Numerical methods in fluid dynamics. Proceedings of theInternational Conference, 26-28 September 1973, at University of South­hampton, England, ed. C.A. Brebbia and J.J. Connor. New York: Crane,Russack.

Ponter, A.R.S. 1972. The application of dual mlnlmum theorems to the finiteelement solution of potential problems with special reference to seepage.Int. J. for Numer. Meth. in Eng. 4(1):85-94.

Shaug, J.C., and Bruch, J.C., Jr. 1975. Solution of a free-surface boundaryvalue problem using an inverse formulation and the FEM. J. Hydrol. 26; .141-52.

Tzimopou1os, C. 1976.
des element finis.

Solution de 1'equation de Boussinesq par une methodeJ. Hydrol. 30(1976):1-18.

Volker, R.E. 1969. Non-linear flow in porous media by finite elements. J.Hydraul. Div.~ Proc. Amer. Soc. Civil Engr. 6:2093-114.

FEM Galerkin Methods

Pinder, G.F., and Frind, E.a. 1972. Application of Ga1erkin's procedure toaquifer analysis. Water Resour. Res. 8(1):108-20.

Salaam, U., and Sandhu, R.S. 1976.
and its numerical performance.
1077-97.

A finite element Ga1erkin formulation
Int. J. for Numer. Meth. in Eng. 10(5):



20

FINITE DIFFERENCE METHODS

Csendes, Z.J. 1975. A Fortran program to generate finite difference for­mulas. Int. J. for Nwner.Meth. in Eng. 9(3):581-600.

Douglas, J., Jr., and Peaceman, D.W.
dimensional heat-flow problems.

1955. Numerical solution of two
J. Am. Inst. Chern. Eng. 1(4) :505-12.

Gray, W.G., and Pinder, G.F. 1976. On the relationship between the finiteelement and finite difference methods. Int. J. for Nwner. Meth. in Eng.10(4):893-24.

Roache, P.J. 1972. C~nputational fluid dynamics. Albuquerque, N.M.: Her­mosa Publishers.

Roscoe, D.F. 1976. The solution of the three-dimensional Navier-Stokes .equations using a new finite difference approach. Int. J. for Numer.Meth. in Eng. 10(6):1299-1308.

Rushton, K.R., and Tomlinson. L.M. Numerical analysis of confined-unconfinedaquifers. J. Hydrol. 25:259-74.

Wood, W.L., and Lewis, R.W. 1975. A comparison of time marching schemesfor the transient heat conduction equation. Int. J. for Nwner. Meth. inEng. 9(3) :679-90.

DIFFUSION, DISPERSION, CONVECTION, CONDUCTION, THERMAL PLUMES,
BUOYANT JETS AND PLUMES

Black\ve1l, R.J. 1959. Laboratory studies of microscopic dispersion phenom­ena. AI. Ch E -SPE Meeting, San Fransisco, California, 6-9 December1959.

Bourodimos, E.L. 1972. Turbulent transfer and mixing of submerged heatedwater jet. Water Resour. Res. 8(4):982-97.

Fox, D.G. 1970. Forced plume in a stratified fluid. J. Geophys. Res.75 (33) :6818- 35.

Hirst, E. 1972.
Resour. Res.

Zone of flow establishment for round buoyant jets. Water8(5):1234-46.

McNabb, A. 1965. On convection in a porous medium. In Proc. 2d Austral­asian Conf. Hydraul. FZuid Mech., p. 161.

Rubin, H. 1973. Effect of nonlinear stab1izing salinity profiles on thermalconvection in a porous medium layer. Water Resour. Res. 9(1):211-21.

Stefan. H., and Vaidyaraman, P. 1972. Jet type model for the three­dimensional thermal plume in a crosscurrent and under wind. Water Re­sour. Res. 8(4):988-1014.



21

Taylor, G.!. 1920. Diffusion by continuous movements. Proc. LondOn Math.Soc. serf 2(20):196-212.

Wooding, R.A. 1963. Convection in a saturated porous medium at largeRayleigh number or Peclet number. J. Fluid Mech. 15:527.

COMPUTER GRAPHICS AND OUTPUT

Felippa, C.A. 1972. An alphanumeric finite element mesh plotter. Int. J.for Nwner. Meth. in Eng. 5(2):217-36.

Smith, D.J.L., and Merr~~eather, H. 1973. The use of analytical surfacesfor the design of centrifugal impellers by computer graphics. Int. J.for Nwner. Meth. in Eng. 7(2):137-54.

MISCELLANEOUS

Boadway, J.D. 1976. Transformation of elliptic partial differential equa­tions for solving two-dimensional boundary value problems in fluid flow.Int. J. for Numer. Meth. in Eng.; pp. 527-34.

Ersoy, O. 1976. Some new rational approximations to the error function.Int. J. for Nwner. Meth. in Eng. 10(2):475-77.

Kroszynski, U. 1975.
at constant flux.

Flow in a vertical porous column drained at its bottom
J. Hydrol. 24(1975):135-53.

Squire, W. 1976. An efficient iterative method for numerical evaluation ofintegrals over a semi-infiidte range. Int. J. for Nwner. Meth. in Eng.10(2) :478-83.



Symbol

Co

n

p

q

V

Po

P

¥

LIST OF SYMBOLS

Description

longitudinal dispersivity (L)

transverse dispersivity

concentration of sea water in total dissolved solids (mass/length3,m/l. 3)

initial concentration (m/l. 3
)

coefficient of molecular dispersion (length 2 /time, l.2/ t )

acceleration of gravity (l.lt 2)

intrinsic permeability tensor (second rank) (l.2)

intrinsic permeability in x-direction (l.2)

intrinsic eprmeability in y-direction (l.2)

intrinsic permeability in z-direction (l.2)

porosity (dimensionless)

pressure (force/l. 2
, f/l. 2)

initial pressure at top of aquifer (fjl.2)

specific discharge vector (l./t)

magnitude of specific discharge vector (l./t)

density coefficient; relates change in density to change in concen­tration (l. 3/m)

coefficient of compressibility for water (l.3/ t )

dynamic viscosity (m/l.-t)

density of fresh water (m;z.3)

density of fluid (m/l. 3)

control volume
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V differential operator: f(a/ax) + ~(a/ay) + ~(a/az)

VZ gradient of Z = 1 in z-direction, = 0 otherwise



Symbol

vector symbol

~ second-rank tensor symbol

Description
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aan normal derivitive of a function with respect to a line or surface




