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Abstract

A digital twin (DT) is a digital representation of
a physical asset that serves as its counterpart —
or twin. DTs differ from static, three-dimensional
models in that they are continuously updated with data
from numerous sources. In one continually changing
world of pervasive computing, where computational
and human intelligence are expanding everywhere,
DTs can be regarded as the backbone for addressing
the synergy of software, devices, movable objects,
networks, and people. In this paper, we present
a novel perspective for designing, prototyping and
testing pervasive and connected DTs for edge computing
enabled industrial applications. The provided paradigm
allows for the creation of computational models for
cloud computing as well as the transmission of
data and computational intelligence through analytic
platforms. A case study is presented to demonstrate
the possibilities of the suggested framework. According
to the outlined findings, the proposed architecture
contributes to effective maintenance and management of
infrastructures and facilities.

1. Introduction

The prosperity of nations is closely correlated to the
status and development of the industrial infrastructure
system. This is demonstrated through the dedicated
target to “build resilient infrastructure, promote
sustainable industrialisation and foster innovation”
under the United Nation Sustainable Development
Goal (UN-SDG) number 9, “Industry, innovation and
infrastructure” [1]. The UN-SDG is explained as the
worlds action plan adopted by all member states to
achieve peace and prosperity for people and the planet.
This might serve as an illustration of the urge for
nations at all welfare levels to “Promote inclusive and
sustainable industrialisation”, as it is worded in the
UN-SDG target 9-2, and to “upgrade infrastructure
and retrofit industries to make them sustainable, with
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Figure 1. The adopted paradigm to building,

prototyping, and testing pervasive and connected DTs

for edge computing-enabled industrial applications.

increased resource-use efficiency and greater adoption
of clean and environmentally sound technologies and
industrial processes”, as it is worded in the UN-SDG
target 9-4. In this perspective, the adoption of
digital twins (DTs) appears as a promising enabling
technology. The origin of the DTs technique dates
back to 2003 when Grieves proposed the concept for
industrial product life-cycle management (PLM) [2].
Grieves characterised the DTs approach in terms of
three different aspects: physical entity, virtual entity,
and data connection. Because of its broad application
possibilities, the notion drew a strong interest from
academics and businesses right away, [3]. DTs have
been effectively used for a variety of objectives in
several application fields, including construction [4],
aerospace engineering, robotics, smart manufacturing,
renewable energy, and process industries [5, 6, 7]. As a
result of its extensive use, the notion of the DTs has been
interpreted in a variety of ways. A broadly accepted
one was proposed by Glaessgen et al. in 2012 [8].
They defined the DTs as a multi-physics, multi-scale,
probabilistic simulation of a complex product that
employs the best available physical models, sensor
updates, and other factors to mimic the life of its
corresponding twin. A more actual interpretation



defines the DTs as a digital representation of a physical
item or assembly that uses integrated simulations and
service data to store data from many sources throughout
the product life-cycle [9]. This interpretation can be
extended to encompass a synergy of software, devices,
networks and people, which may unleash novel uses of
DTs in factories of the future [10].

DTs can be viewed as the backbone for addressing
the synergy of software, devices, movable items,
networks, and people in one constantly changing
environment of pervasive computing, where artificial
intelligence (AI) and human intelligence are increasing
everywhere. In this work, the concept of pervasiveness
is borrowed from the healthcare field as a holistic
vision of pervasive and connected assets, as defined by
the so-called healthcare 4.0 [11]. This challenging
pervasive DT evolution calls for new software
architectures, network protocols and interoperable
platforms, featuring levels of flexibility beyond the ones
provided by the solutions available in the state of the art.
Even though DTs have been successfully employed for
a number of purposes in a range of application domains,
the challenges of empowering edges of computer
networks and adding computational intelligence to them
have yet to be thoroughly considered. In this study,
we adopt a new approach to building, prototyping,
and testing pervasive and connected DTs for edge
computing-enabled industrial applications, as shown in
Fig. 1. The selected paradigm enables the development
of cloud computing computational models as well as
the transfer of data and computational intelligence
via analytic platforms. To show the capabilities of
the proposed framework, a case study is provided. In
particular, a DT is designed for Slamrensing AS, a
Norwegian company that provides cleaning solutions
for entrepreneurs, process industry, mining, and energy
processes. This is addressed through organising the
paper as follows. A review of the related research
work is given in Section 2. In Section 3, the proposed
framework architecture is presented. The potential
convergence of humans, “things” and AI in creating
edge intelligence is also discussed. The considered case
study is described in Section 4. In Section 5, simulation
results are outlined. Finally, conclusions and future
works are discussed in Section 6.

2. Digital Twin: an Industrial Perspective

In principle, DTs have surpassed the traditional
notions of modelling & simulation in the following
respects: a) DTs are characterised as high-fidelity
prototypes of any given physical system/process,
backed by continuous bidirectional data flow between

physical and virtual entities. This continuous
interaction enables DTs to emulate the functions and
operations of their physical counterparts over their
entire life cycle; b) the augmentation of information
& communication technologies, namely the internet
of things (IoT), big data science, and communication
technologies (4G, 5G, and beyond networks) with
virtual models account for yet another distinctive feature
of DTs. These emerging fields are the key enablers
in consistently replicating physical systems in real-time
through their high-fidelity DTs.

The aforementioned technologies have led to the
generation of massive volumes of data. Therefore,
challenges related to the storage, processing, and
subsequent analysis of big data can be handled through
storage spaces and fast processing capabilities offered
via cloud computing technologies [12]. While cloud
computing technologies offer numerous benefits, they
come with communication costs along with delays in
process prognostics [13]. Contrary to cloud computing,
edge computing is a bridge between the end user
and the cloud facilities. Recently, the current trend
is leaning more toward edge computing technologies
to facilitate processing of important data/parameters
in the vicinity of the processes. Technically,
edge computing networks comprise computational
hardware resources such as local servers running data
compression techniques [13]. The analytical capabilities
of edge computing are limited in comparison to
cloud computing but nevertheless, edge computing
offers optimisation of cloud computing resources [14].
Within edge networks, advanced statistical and machine
learning (ML) algorithms [15] may be deployed to
manipulate and extract useful information from a
relatively smaller expanse of data generated through
on-site interconnected field devices. This, in turn, may
account for optimised process flows, timely insights,
decision-making, and enhanced safety of the underlying
physical processes without compromising on bandwidth
limitation, latency, and data security. The complex
processing tasks that are beyond the capability and the
scope of edge computing are taken care of in the cloud
infrastructure.

2.1. Practical Considerations in the Digital
Twin Development

The development of a DT for any asset/process
starts by replicating its physical characteristics through
realistic 3D digital drawings and simulation. Advanced
modelling techniques, specialised engineering software
and simulation tools are used at this stage[16]. The
choice of modelling and simulation tools that can best



represent the desired properties and expected behaviour
of the to-be-designed DT can be overwhelming
at preliminary stage. This is due to lack of
uniform understanding and consistent approaches
across different disciplines for the intended DT
representation [17].

The important aspect of DT development involves
unobtrusive data connectivity between the twinning
entities. The essential data acquired through physical
sensors, cameras, laser scanners and IoT devices
can be utilised for comprehensive representation
and continual adaptation of the 3D digital models
to their physical counterparts. Furthermore, data
processing, data-driven simulations and analysis are
carried out to optimally schedule plant operations,
resources, predictions and maintenance activities.
Thus, data-driven decision-making and prognostics
significantly enhance the intelligence of underlying
digital models and autonomy of plant operations.

The scope of DTs vary with the scale and
requirements of the corresponding physical
counterparts. For small and medium sized enterprises
(SME), the right tools/expertise to successfully
implement DTs are hard to come by. In such situations,
the use of full stack service pool, outsourced to third
party services is quite on the trend. By combining
DTs and third party services, the significant value
can be created from the underlying processes. These
third party services can be scaled and may be used on
demand while camouflaging the heterogeneity from
various resources and vendors. The trending services
in today’s world of IoT account for computational
resources, data storage & management, data transfer
& communication, and, smart analytics, to name a
few [6, 18].

In an industrial framework, a plausible approach
may be to create libraries of virtual models
for commonly encountered physical entities or
manufacturing units. The encapsulation of virtual
models in services can benefit the developers, the users,
and the overall value chain of the DTs by reducing the
lead time of DTs while rendering the reusability of
services/libraries across heterogeneous platforms [19].

2.2. Digital Twin Applications

The requirements and the methodologies that need
to be adopted for the deployment of DTs in different
industries are subjective. Technically, the sludge
treatment plants considered in the case study are related
to the process industry, but their area of applications
encompasses the construction industry.

The process industry is characterised by the facility

running complex processes. The foremost barrier to
the implementation of DTs in the process industry is
to simulate the behaviour of the involved processes
through dynamic simulations in real-time. So far, exact
process models and their continuous updates are quite
hard to come by, thereby accounting for the lack of
practical implementations of DTs within the process
industry [20]. A detailed overview of the existing trends,
enablers, and barriers within the process industry is
presented in [21]. However, from a process monitoring
perspective, DTs combined with smart sensors and
pervasive connectivity can serve to analyse critical
process parameters, optimise operations, maximise
profits, reduce costs and human-process interaction. A
similar outlook has been adopted in this article.

Construction industry is another prospective domain
where DTs can be deployed. Hitherto, the construction
industry is perceived as the least digitalised of all
the industries owing to the lack of innovation, lack
of unified approaches and non-proprietary building
information modelling (BIM) software [22]. BIM
is essentially a digital representation of physical and
functional characteristics of any construction facility.
The case study proposes a different approach to DTs
in the construction industry, where instead of making
digital twins of constructions, the aim is to make DTs of
the construction equipment, more specifically a sludge
treatment plant. The designed DT enables workers at
construction sites to carry out maintenance procedures
more effectively with improved plant operations.

The recent advancements and ongoing research in
DTs and other relevant fields will usher a new era of
smart and innovative operations in nearly all industrial
applications.

3. Proposed Architecture

This section describes the proposed architecture
including hardware, software and communication
protocols needed for a full pipeline system from
raw sensor data to a structured and informative DT.
The process starts with gathering data, which is
then stored in the cloud. This information can be
accessed/visualised in a DT, and potentially used for
predictions in a decision support system (DSS).

Fig. 2 shows the proposed software architecture
that could provide a platform capable of bringing the
paradigm from Fig. 1 to life. It shows how plants,
situated at different geographical locations, send data
into an IoT backend system. The frontend DT then
fetches the data from the IoT backend. The architecture
also contains an authentication backend as well as
another database (DB) for additional features such as
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Figure 2. The proposed software architecture for

edge computing-enabled industrial applications.

routines and routine logs. These are all hosted in cloud
services. Even the DT can be hosted in the cloud,
accessible on a website. To emphasise the flexibility
of this framework, the diagram shows heterogeneous
plants connected to the same IoT backend. Such
a framework has provision for expansion, i.e., any
plant or facility can be embedded into this cloud-based
infrastructure, be it a production line, a robotic cell, a
water treatment plant or farming equipment, to name a
few.

Fig. 3 shows a sequence diagram for the proposed
architecture. Note that the diagram is used hereafter
to present blueprints (the real implementation of the
system may differ). Fig. 3 explains the communication
flow all the way, from the physical plants, up to the
frontend DT. Step (1) in the figure is the IoT data transfer
from the plants to the IoT backend, (cf. Section 3.2).
This transmission happens with fixed time intervals
and goes on for the lifetime of the data source. To
access the data, an end-user starts with entering his/her
user credentials in the frontend DT (2). Further on,
the credentials are sent to the authentication backend
through an application programming interfaces (API)
(3), where it is verified (4) before an access token is
returned to the frontend DT (5). The user roles are then
queried (6), checked in the backend (7) and returned to
the frontend DT (8). These roles can represent plants the
end-user has access to. Therefore, they are displayed
for the user in the frontend DT (9). Based on the
roles displayed to the end-user, he/she may select to
view a specific plant (10), causing the frontend DT to
query data for that plant (11). It is returned from the

IoT backend (12) before it is embedded in the DT (13)
and displayed to the end-user (14). The user can read
data, get alerts and interact with the 3D-model in the
displayed DT. He/she can also update the routine log
by giving inputs to a routine interface in the DT. These
routines are stored in the cloud DB (15). At last, the
end-user can log out (16-19), deactivating the access
token from (5).

3.1. Gathering IoT Data for Edge Computing

Data is the backbone of every DT. Gathering data
and publishing it to the cloud enables features like
cloud computing, remote access, remote control and
alert systems, to name a few. In addition, the crucial
step of data gathering can also include real-time data
processing.

Data gathering at the lowest level starts with
sensors. For automation systems, these sensors are often
connected to a programmable logic controller (PLC),
where the sensor data can be used for the closed-loop
control of systems. Advanced sensors support
structuring of the data already before leaving the
device, such as the Flow Thermal Meter for gases
(FTMg) [23] from SICK, to name an example. This
is typically done through a standard called Open
Platforms Communications Unified Architecture (OPC
UA). OPC UA is a cross-platform, open-source,
IEC62541 standard for data exchange [24]. Structuring
of data with this standard can provide the system with
semantic interoperability as well as lay the foundation
for a good data model whose benefits can be utilised all
the way up to the frontend DT.

Today’s industry comprises many offline PLCs
working as a closed system. Industry 4.0 aims at
expanding the scope of these closed offline systems
by connecting them to the internet. A versatile
solution that works in harsh environments without any
Wi-Fi connection is to use state-of-the-art modems/IoT
routers like the Ewon Flexy [25]. In addition
to being able to receive data from PLCs or other
hardware devices, this device provides the possibility
for real-time data processing enabling another step
of edge computing. It supports scripting in JAVA
and BASIC giving developers huge possibilities for
both data processing as well as publishing data
to the cloud using industrial graded communication
protocols like Hypertext Transfer Protocol (HTTP)
based protocols like OPC UA or MTConnect as well
as another protocol called Message Queuing Telemetry
Transport (MQTT) [26]. For projects where more
communication and edge computing options would be
desired, a Raspberry Pi could be used together with
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a 4G modem. This would increase the complexity of
the system with an extra hardware device, but it would
enable a higher storage capacity, computing power and
flexibility to the edge device. H. Huang et.al. proposed
this in [26], though with a Wi-Fi connection instead of a
modem, which would not be feasible in remote locations
with no Wi-Fi. An Ewon Flexy modem was already
connected to the relevant plant in the case study and was
deemed adequate for the project.

3.2. Storing IoT Data for Cloud Computing

Either of the two protocols, viz., MQTT or HTTP
may be used to populate a cloud DB from an IoT
device. To choose between MQTT and HTTP, there are
a few aspects that should be taken into consideration.
An HTTP connection is only kept alive while sending
the data. This enables for connections to multiple
servers and can potentially handle large traffic. On
the other hand, an MQTT connection can be upheld as
long as the device is running, also allowing for a more
complex connection with possibilities of using tokens,
certification files and encryption, thereby enhancing the
level of data security [27].

HTTP is normally used such that the IoT device is
the HTTP server, while the cloud DB where data is
stored acts as a client. The client queries data through
GET requests. MQTT works in a different way. The
IoT device is the MQTT client and can send data to
the MQTT broker, or server at any times. This allows

for highly customised data transmissions. For instance,
the IoT device can send data only when certain values
exceed a threshold. In addition, it can perform specific
structuring and calculations on the device with complete
control over what is being sent. This type of edge
computing is highly relevant for the IoT domain, and
it is the reason why MQTT generally is used on low
bandwidth sites or for edge computing [27].

By utilising cloud services to host the MQTT broker,
it can serve as a hub for an unlimited amount of IoT
devices located at different geographical locations on
different networks. Microsoft Azure has such a service
out-of-the-box called the IoT Hub [28]. One of their
competitors, i.e., Amazon Web Services (AWS), does
not offer a similar service. Therefore AWS relies on
third party software or some additional development
project. Fortunately, a Norwegian based company
called Dimension Four (D4) [29] provides such a crucial
service for AWS.

Choosing a suitable DB for IoT is important to avoid
performance issues when accumulating large amounts
of data to enable efficient processing of big data. As
stated in [30], NoSQL DBs is the preferred option for
big data and IoT applications because of their efficiency
and scalability.

3.3. Accessing IoT Data

When big data is stored in an efficient DB, it can
be accessed into a frontend application, i.e., a DT. It is



possible to get direct access to the DB remotely over the
internet. This can be quite a simple approach, but on the
other hand, it involves a big security risk with regards to
a no-trust policy, which is becoming the standard within
cyber security. By making use of APIs for data exchange
over the internet, i.e., between the frontend application
and the backend system, additional layers of security
can be added including token based authentications,
encryption, and scope-based user access/restriction. In
addition, a good API can make it easier to query data
as well as creating limitations to avoid overloading the
backend system with large queries.

The two common types of APIs widely used in the
above context are RESTful and GraphQL APIs [31].
One of the prime differences between the two APIs
is that with the REST API, the client has to query
the server several times to retrieve desired information
from all the relevant data endpoints. This situation
is analogous to inadequate data fetching against each
query, thereby prompting the client to query again.
On the contrary, against each endpoint, all the extra
information is returned to the client, though unintended
for the client. These two scenarios correspond to
under-fetching and over-fetching of data, respectively.
However, in GraphQL, the client has the flexibility to
retrieve only the desired/specific information from the
data endpoint with just a single query only. The query
then returns the complete pertinent information in the
form of a JSON string while saving the client from
several queries or making multiple network calls back
and forth between the DB and the client. Therefore,
GraphQL APIs offer better efficiency as compared
to RESTful APIs. Furthermore, the development
with GraphQL at both client and server sides can be
carried out in parallel, thereby speeding the development
process significantly.

D4, the company providing the IoT backend for the
case study of this article, offers a GraphQL API on top.
To safeguard against querying massive datasets resulting
in pummelling of service and data overloading, D4 has
stipulated the maximum signals per query to 100 only.
Furthermore, the feature to trace and invoice clients
querying at huge expense has also been set up in place.

3.4. Visualising Data

DTs are emerging as a powerful way of visualising
data for better understanding and decision making.
Several different tools can be used to create DTs.
Unity, V-Rep, RoboDK and Gazebo are just a few
[32]. Gazebo and V-Rep are highly accurate and
capable simulators, and RoboDK is exceptional for
intuitive offline programming of robotic systems.

However, these tools lack something important
that Unity provides: customisability [32]. Firstly,
Unity has various possibilities with regards to
creating custom applications for different use cases.
Creating comprehensive, informative, data-driven DT
applications for end-users of different backgrounds
require simple user interfaces (UI), tailor-made for
the specific use case. This, together with advanced
simulation capabilities, as well as integration with
Robot Operating System (ROS) makes Unity a very
suitable and flexible option for DT development [33].

The platform flexibility and level of customisability
that Unity provides gives a potential for an efficient,
intuitive interaction with the DT. Creating simple UIs,
enables a convergence between humans and “things”
in creating edge intelligence. The potential of using
AI based data interpretation enhances the level of
understanding even further providing end-users with
cutting-edge technology at their fingertips without the
need for deep technical understanding.

The end-users, be those highly-skilled engineers,
construction site workers or non-technical managers,
can use the DT as a DSS to stay well informed and make
data-driven decisions. Further on, they can monitor the
results of their decisions, and take actions based on that.

Unity provides cross-platform support with
possibility to build apps for Android, iOS, Windows,
Mac OS and Linux. It even has the possibility of making
WebGL builds, enabling web browser based DTs that
are not depending on any installations or specific
operating systems and can be hosted in a cloud service.
This cloud computing approach is great for meeting
the specific needs of customers. Some might want to
use a DT outside the office for in-field maintenance. In
that case a phone app is the perfect tool. However, for
management or real-time monitoring, a web browser
based app might suit the need. It can be accessed
at any time from any device giving the user a broad
flexibility. A browser based app reduces the need for
local computational power with the app placed in the
cloud on a platform like Azure or AWS.

To present stakeholders with real-time data
visualisation and analytics for a DSS, some of the
commercially available software are: Power BI,
Grafana, and Azure Time Series Insights (ATSI). All
these softwares have support for querying data from the
GraphQL API, which makes it viable for the case study.
This implies that the same IoT backend may be used for
both the DT and the dashboard without any change in
the proposed architecture.

For rapidly expanding enterprises, the growth of
data is in proportion to the expansion rate. This is
analogous to the case study of this article, (cf. Section 4).



The primary goal is to prevent data blow up due to
ever-increasing data volume. A scenario corresponding
to poorly designed and computationally expensive flat
data tables can be avoided by carefully modelling data
tables in accordance with the enterprise preferences.
Power BI is a powerful tool that offers efficient data
modelling capabilities. By identifying relationships
between different data entities within the data models,
it is possible to avoid data redundancy, reduce data
footprint, and improve the performance of data models.
Due to advanced capabilities such as sifting through
data, creation of customised tables, implementation of
row level security, and ability to scale up seamlessly
with the enterprise scale and size, Power BI has been
chosen as a preferred tool for the creation of dashboards
and periodic reports for the case study.

Displaying data for a long time period, say one
year, requires a high bandwidth in order to fetch all
the data for that period. One way of displaying data
over longer time duration, while both lowering the
bandwidth requirement as well as avoiding performance
hiccups on low-performance devices, is to calculate
some key performance indicators such as daily average
or median, maximum and minimum values closer to the
data source. It can be done in the IoT backend from Fig.
2.

3.5. Authentication and Data Security

To provide stakeholders with access to the enterprise
web application, comprising mainly of the DT, the
live data streaming, and custom smart visuals, an
important consideration is to have a secure identity
access management (IAM) solution in place. Any
breach in customer data confidentiality or failure to
comply with data protection legislation can backfire
for both companies. Therefore, for keeping the
user information safe from malicious cyber-attacks and
safeguarding from the inadvertent dissemination of
sensitive information to competitors or unintentional
recipients, an off-the-shelf solution for IAM is
outsourced to Auth0. Auth0 provides expert security
services for authentication and authorisation that are fast
to implement and easy to customise. With reference
to this article’s case study, an off-the-shelf solution
from Auth0 sped up the production and deployment
of the web application/portal with smart features like
securing user information and access keys, assigning
specific roles for users in different cadres, and hashing
of passwords.

Outsourcing authentication procedures to domain
experts can also help speed up production. Nowadays,
different authentication companies, having expert

knowledge and experience, provide commercial
solutions relevant to authentication procedures and user
DB management. Using a provider like Auth0 provides
a dashboard to manage users and assign roles.

4. Case Study

The aim of this case study is to develop a DT for
Slamrensing AS’1 sludge treatment plants stationed at
numerous civil engineering sites, e.g., mining works,
drilling and energy well companies, tunnels, and stone
processing industries, to mention a few. Primarily, the
construction industry outsources sludge/water treatment
solutions to the plants from Slamrensing.

The DT of Slamrensing’s plants serves as a
one-to-one visual interface for the operators on
construction sites, thereby enabling them to understand
core plant operations, view essential components/assets
used in the treatment plants as well as enabling them to
perform fault prognosis without needing Slamrensing’s
support personnel to travel to their far-flung construction
sites. Furthermore, DTs provide intuitive interface
for the operators to view troubleshooting guidelines
and essential maintenance routines/procedures for
different components, resulting in improved plant
performance and reduced plant downtime. Wherein
DTs, real-time access of Slamrensing’s plants is
provided for both Slamrensing AS’ enterprise and
clients to monitor the ongoing operations using live
data visualisation and smart analytics with Power
BI. Furthermore, the Norwegian government needs to
be reported upon compliance with sludge cleansing
regulations. Therefore, the generation of periodic
reports, summarising the water quality parameters at
every treatment plant, is provided through Power BI.

5. Simulations and Results

The proposed architecture is utilised to create a
DT for the case study presented in Section 4. Firstly
targeting operators, the DT application provides an
intuitive UI for any user. Fig. 4, 5, 6, 7 and 8 shows some
of the different tabs in the DT’s UI. A video depicting
the entire case study is available on-line at https:
//youtu.be/ucsNbsLo6fM.

Fig. 4 shows the default view of the DT, giving
an overview of the entire plant. The “Assets” tab,
(cf. Fig. 5), displays the main assets such as sensors,
pumps and other equipment. Clicking on an asset
provides the user with a detailed view of that specific
asset including real-time data, a data plot with recent

1The word “Slamrensing” translates to “sludge cleaning” in
English.

https://youtu.be/ucsNbsLo6fM
https://youtu.be/ucsNbsLo6fM


Figure 4. Default view of the twin.

Figure 5. List of assets containing sensors, pumps

and other key components.

data as well as a troubleshooting guide when an error or
a warning occurs. The errors and warnings are based
on variable threshold values, which are dependent on
certain control parameters at the physical twin. Fig. 6
shows an example of a troubleshooting guide in the
DT. Further on, it is possible to view a collection of
recent data from all the sensors in the “Historian” tab,
(cf. Fig. 7). A checklist with routines can be viewed in
the “Checklist” tab, (cf. Fig. 8). This tab also contains
a log of previously performed routines. The checklist
is sorted based on the urgency, that is days left before

Figure 6. Troubleshooting guide for the flow sensor.

Figure 7. Historical data for the last hours.

expiry.
The charts, (cf. Fig. 7) display data over the last 6

hours. To keep the application fast and lightweight, the
numbers of data points for each plot has been limited to
100. This enables the data view panes to be adjusted
and viewed easily on any screen size or device type
that the operators carry with them, ranging from old
smartphones and tablets to laptops. E.g., to display data



Figure 8. Checklist sorted after expiry date.

for a year, the method proposed in Section 3.4 can be
used. Instead of plotting all the data, only the average,
minimum and maximum values would be plotted.

6. Conclusions and Future Works

A novel approach to developing, prototyping, and
testing pervasive and interconnected digital twins (DTs)
for edge computing-enabled industrial applications was
presented in this study. The proposed paradigm allows
for the creation of cloud computing computational
models as well as data and computational intelligence
transfer via analytic platforms. A case study was
presented to demonstrate the possibilities of the
proposed framework. Slamrensing AS, a Norwegian
firm that provides cleaning solutions for entrepreneurs,
process industries, mining, and energy operations,
was designated as a DT. The suggested architecture,
according to the findings, facilitates the proper
maintenance and management of infrastructures and
facilities. One of the main goals of this work is to boost
global efforts to realise the wide range of application
possibilities provided by DT and to give an up-to-date
reference as a stepping-stone for future research and
development in this domain. The main advantage of
the proposed framework is that it is cross-platform, and
it can even run on an internet browser. However, a
drawback with running it in a browser is related to the
complexity of the scene and the degree of fidelity, which
could cause performance decays.

The Slamrensing enterprise can accrue enormous
benefits with the ability to control programmable
logic controllers (PLCs) or the connected human
machine interfaces (HMIs) remotely via the DT. The
PLCs at Slamrensing plants support secure virtual
private network (VPN) connection over the Internet
for remotely accessing, monitoring, controlling and
programming operations on PLCs. The use of smart
sensors, and modern industrial internet of things (IIoT)
routers can go a long way in adding such capabilities
within the DT. The proposed approach is somewhat
analogous to what Kim et al. adopted in connecting a
ROS-Gazebo system to control a PLC [34].

To further exploit the potential of DTs, virtual
reality (VR) or augmented reality (AR) can be used,
giving the end-user an even more comprehensive
experience [35, 36]. AR could be used to overlay the DT
data on top of its physical counterpart. The user would
be able to perform maintenance with real-time data
and informative descriptions supporting maintenance
decisions during the actual labour. This also allows
users with physical complications to maintain and watch
over a project. It can also come in handy if the site or
plant is on a remote destination where there could be
multiple obstacles to get to the physical area. With all
the capabilities DTs provide, the future works could go
on for many pages, but the features mentioned above are
considered the most relevant for the case study in this
project.
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