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Abstract

Artificial Intelligence (AI) is adopted in many
businesses. However, adoption lacks behind for use
cases with regulatory or compliance requirements,
as validation and auditing of AI is still unresolved.
AI’s opaqueness (i.e., ”black box”) makes the
validation challenging for auditors. Explainable
AI (XAI) is the proposed technical countermeasure
that can support validation and auditing of AI. We
developed an XAI based validation approach for AI in
sensitive use cases that facilitates the understanding
of the system’s behaviour. We conducted a case
study in pharmaceutical manufacturing where strict
regulatory requirements are present. The validation
approach and an XAI prototype were developed through
multiple workshops and then tested and evaluated with
interviews. Our approach proved suitable to collect the
required evidence for a software validation, but requires
additional efforts compared to a traditional software
validation. AI validation is an iterative process and
clear regulations and guidelines are needed.

1. Introduction

Advances of Machine learning (ML) / Artificial
Intelligence (AI) have led to their increasing use.
However, while a particularly high adoption of such
technologies can be observed in some areas like online
marketing, high-risk or other sensitive industries that
are highly regulated like banking or finance show a
low adoption of AI [1]. The latter often have higher
standards for proper quality assurance/validation when
adopting new technologies [2]. New technology needs
to be audited or validated before it can be used.
However, auditing and validating of AI is challenging
[3, 4]. This is a major barrier for adoption of AI-based
applications in sensitive use cases [5].

AI systems need to be evaluated for possible negative
consequences of inadequate functioning to minimize
risks. While interpretable ML models are (to some
degree) directly comprehensible [6], many AI systems
rely on non-transparent ML algorithms, i.e., black box
algorithms [1]. For the latter, the limited understanding
of the decision process is considered a major drawback
when implementing them [7]. Examples of biased
AI systems [8] furthermore increase caution when
considering their use in sensitive areas as decisions
based on biased data or wrong decision criteria can have
major consequences. Thus, such systems need thorough
validation that properly addresses AI specific issues like
the black box problem. However, practical guidelines
on how to validate AI systems are still missing. The
scientific literature suggests that advances in the field
of explainable artificial intelligence (XAI) will be
instrumental in providing insights about black box AI
systems [9, 10]. Understanding the underlying decision
rules might allow some confidence in the forecast of
an AI’s behaviour in new and previously unknown
situations, which is essential when the consequences
of errors are potentially severe. However, most of the
existing work lacks empirical evidence gathered through
studies of existing XAI frameworks and their ability
to satisfy the needs of stakeholders [2]. Many authors
suggest that XAI might be helpful in the validation
[2, 6, 9, 10], but specific approaches have yet to be
developed and evaluated. At the same time, issues
concerning the auditing and validation of AI systems are
becoming a more prominent topic [4, 11].

We aim to combine these two actively discussed
aspects in AI system research and focus on the following
research question: How can XAI be utilized to validate
AI systems in sensitive use cases? To answer this
question, an XAI based validation approach for AI
in sensitive use cases was developed by a team of
academics, industry experts and an auditor. In a
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case study at an Austrian pharmaceutical manufacturing
company we evaluated whether the proposed approach
gathers sufficient information for a successful validation
of an AI system in this sensitive use case. The results
show that XAI is essential for a successful validation
of AI systems in the highly regulated pharmaceutical
industry. In the following sections, we will first discuss
the related work before introducing the case study. Next,
the proposed validation approach is presented as well as
the underlying AI system and applied XAI approach.
Finally, we reflect on the evaluation results of this
case study. In conclusion, we discuss the results and
theoretical and practical implications.

2. Background

Recent developments in AI technologies increased
the performance of AI based systems [5]. However,
at the same time they often become increasingly
more complex. With rising complexity, it is getting
more difficult to extract and understand the underlying
reasoning. This circumstance is often called the “black
box problem” [5]. The black box character of AI is often
considered a primary concern for trust in and acceptance
of AI systems [9, 12].

Validation in highly regulated areas- Understanding
the inner workings of AI systems is not always
needed in cases where the consequences of failed
decisions are less severe [12]. However, the black
box character can be a limiting if not disqualifying
factor in critical applications [5]. In safety critical
and thus usually highly regulated industries like
the pharmaceutical sector, it is mandatory to assure
the reliability of introduced technologies prior to
integration into operating processes [13, 14]. Different
procedures of assuring suitability and reliability of
information systems (IS) in business processes can be
found, e.g., quality assurance, software verification,
software validation or IT auditing [15]. The
common goal is to systematically compile evidence to
ensure consistency/reliability and compliance with the
specifications of the IS. Aligned with the terminology of
regulations relevant in the pharmaceutical industry [13,
14], we use the term validation to subsume the
process of providing “[...] objective evidence, that the
requirements for a specific intended use or application
have been fulfilled”[15].

Following the prescribed validation of software,
several official guidelines like the FDA’S ”General
principles of Software Validation”[16] or the European
Commission’s ”Good Manufacturing Practice (GMP)
guidelines Annex 11: Computerized Systems”[17] as
well as industry specific approaches were developed

in the recent decades [18]. Following the regulatory
guidelines, the approaches are predominantly linear
and sequential. However, existing software validation
approaches cannot be carried over to present AI systems
as they face several open issues.

Open Issues- A fundamental difference of AI
systems compared to traditional software is the
importance of data in the development process. In
traditional software all application logic and instructions
are expressed by the developers in source code [11].
AI systems based on ML learn their application logic
independently of developers from provided training
data. The importance of data quality is thus a pivotal
factor, but clear guidelines are still missing [19, 1].
Additionally, as the ML research (which dominates
contemporary AI systems [11]) is still in its early
stages, many fundamental issues like terminology and
standardized guidelines for ML quality are missing [11,
20]. A recent upturn in ML testing research has been
noticed [21], however issues like lack of specification
and defined requirements in learning-based approaches
or the interpretability of black box models/systems are
still to be determined [20].

As there are many open issues and no way to verify
correctness of AI systems by mathematical proofs,
Winter et al. suggest to “[...] validate whether a
ML approach is reasonable, correct, meaningful and
clear” [4]. Depending on the effects of the application’s
decision on people, environment, and organizations they
assign criticality levels. The higher the criticality level,
the more extensive the testing for the ML application has
to be. In more critical applications, the audit catalogue
demands explainability and interpretability [4].

XAI as facilitator for the validation of AI
systems- Explanations for an AI system’s behaviour
can be provided trough XAI approaches. XAI
makes AI systems understandable to humans [9].
Many XAI techniques have been developed to
enable post-hoc explanations for opaque ML models.
They enhance interpretability using textual or visual
explanations, explanations by example or feature
relevance explanations [6]. XAI approaches for
computer vision are developed for specific ML models.
Because artificial neural networks (NN), especially
convolutional NN, are often used in computer vision,
many model-specific XAI approaches like heatmaps
[22] and class activation methods (GradCAM) [23]
were developed, too. There are also prominent
model-agnostic approaches like LIME [24] and SHAP
[25] that can be used in AI-based computer vision
systems. A comprehensive review of XAI approaches
was recently conducted by Arrieta et al. [6]. XAI
approaches can reveal hidden features influencing the
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decisions made by AI. Including XAI in the validation
of AI systems can help detect underlying problems
which could not have been detected by only focusing
on conventional evaluation metrics [26]. Furthermore,
the analysis of different ML models developed for the
same purpose examined with a visual XAI approach
indicated that there might be significant differences in
the explanation provided by the ML models [7]. While
it has been shown that XAI can provide insights into
black box AI systems in various contexts [24, 26], to
date there is no systematic approach on how to utilize
XAI to assure that the developed AI systems act reliably.
To address this research gap, this paper proposes
a validation approach that addresses all necessary
information needs for a validation in a highly sensitive
area like the pharmaceutical industry.

3. Case Study

The pharmaceutical industry is known for its need
of high regulatory compliance. In this context, every
newly introduced IS or process has to go through
rigorous validation procedures to assure its adequate
functioning. Existing and established regulations are
tailored to validation of classic soft- and hardware
[13, 17, 27]. AI based systems are simply not
covered. This is known and attempts to resolve
that shortcoming were started [28]. Nevertheless, a
significant hesitation in implementing new AI systems
arises from the uncertainty concerning the AI systems’
decision behaviour.

Our case study is about an Austrian manufacturing
plant for parenterals (sterile pharmaceuticals). Sterile
drug manufacturing requires strict adherence to
operating procedures and timely documentation of
all activities, especially in the sterile core where
product is filled into vials. Although the open product
is protected and separated from human operators at
all times, interventions above the open product may
impose the risk of introducing particles and results
in rejection of possible affected products. Even
for experienced operators, it is sometimes difficult
to make a precise distinction between critical and
non-critical interventions (and thus about the necessary
corrective actions). It is only understandable that human
interventions have to be timely documented, classified
and analysed in order to produce the highest possible
quality. Precisely this contradiction - sterile operation
without humans is not feasible currently, but humans
impose the highest risk - can be mitigated through the
use of an AI system.

The proposed AI based system is set to detect the
time and place of human intervention in an otherwise

(machine) automated process, and to additionally
classify whether the intervention should result in the
removal of possibly affected vials present during the
intervention. This case study focuses on the issue
of understandability and interpretability of AI models
and how the introduction of XAI component(s) in the
validation procedure might help in facilitating trust and
provide evidence of the AI system’s adequate behaviour
to be implemented in a highly sensitive area.

3.1. Procedure

To assure the proper functioning and results of
the AI system a validation approach is needed that
better addresses the specific issues emerging from AI
technologies. As validation in critical use cases needs to
consider all possible situations, testing the performance
with a set of test cases is not sufficient. Understanding
the underlying decision behaviour of the AI system is
necessary to uncover wrong decision criteria that could
lead to negative consequences in certain settings. For
example, consider that the presence of a stationary
object in the production line is learned as a main
decision criterion. However, in reality this component
is irrelevant for the differentiation between critical and
non-critical interventions, but simply results from biased
training data where the component was present in all
critical interventions. Black box AI systems would
not allow to understand that the presence of this object
influences the decision. Thus, the overarching goal of
the presented collaborative research and development
project was to develop a validation concept for AI
that would address and satisfy the information and
explanation needs during a software validation process
in the pharmaceutical industry. A team of academic
researchers, industry and technology experts as well as
a GMP auditor conducted ten requirement workshops
over the time span of seven months. In each workshop
the experts of their field addressed specific issues
regarding the situation at the pharmaceutical company,
regulatory restrictions and technical possibilities which
were then discussed and analysed. Concurrently, a
literature review was conducted to map the challenges
and approaches to validate AI systems identified in
scientific literature. The result was a collection
of issues and requirements for the AI system and
its validation concept that needed to be addressed
adequately. Expanding on the requirements from
traditional software validation the main AI specific
issues that needed to be adequately addressed were data
and transparency of decision mechanisms.

Based on this compilation of requirements, a
preliminary validation concept was proposed. The
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main goal was to increase transparency and provide
evidence suitable for a software validation in the
pharmaceutical industry. The drafted validation concept
was then iteratively adapted until it was conceived
satisfactory and implementable by all involved parties.
Concurrently, the AI system with its XAI component
was developed to pose as a prototype to be used for the
developed validation concept.

3.2. Learning and explaining criticality of
interventions from video streams

Figure 1. Example input frame showing two

corresponding glove ports from two fixed camera

positions. Green regions indicate HOG sampling areas

for detecting an intervention for a specific port, red

regions for classification of the criticality

To detect interventions, i.e. glove insertions, two
fixed wide-angle cameras located at the ceiling of the
aseptic core (”isolator”) are used to capture a continuous
video stream at 10 frames per second. We formulated
the task as ML problem and implemented a two-stage
computer vision algorithm to analyse the video stream
in real-time.

For each glove port p, a Random Forest (RF) [29]
algorithm first learns a binary classifier Cp

int of whether
the glove is inside (positive) or outside the isolator
(negative). Each frame is classified independently based
on Histogram of Oriented Gradient (HOG) features [30],
computed within a manually defined region for each
glove port, see green regions in Figure 1. For this ML
problem, this particular choice of classifier and features
achieved more robust results than state-of-the-art NNs,
which tended to over-fit to our limited number of
training samples. The training set consists of positive
samples from actual glove insertion sequences and
negative samples from other sequences, e.g. where
operators moved in the vicinity of the glove port, or
performed insertions in neighbouring glove ports.

To distinguish between critical and non-critical
interventions, a second binary RF classifier Cp

crit is
trained, again for each glove port. It uses HOG features

Figure 2. Visualization of SHAP values for HOG

features significant to the criticality decision. Critical

(top) and non-critical (bottom) frame for a glove

position from both cameras, masked by the difference

image indicating movements

from a larger region around each glove port (red regions
in Figure 1), to assess the criticality of each frame,
where Cp

int detects the glove inside. HOG features are
computed on the difference image between the current
and the first frame before the intervention. Once a single
frame is detected as critical, the whole intervention is
considered critical. This training set consists of critical
and non-critical glove insertion sequences. Critical
sequences also contain non-critical frames, typically
in the beginning and at the end, and at least one
critical frame. Since the frames do not contain ground
truth criticality labels, we use a pre-training stage that
automatically determines, which frames are critical and
which frames are not critical. These generated per-frame
labels are then used to build Cp

crit. Data for supervised
pre-training was generated by a weak-label heuristic:
all frames of critical sequences, except the first and
last n frames, were labelled as critical, the remaining
frames as non-critical. Depth-reduced RFs Csel were
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trained on HOG features to prevent over-fitting to this
partially wrong labels. In a subsequent step, we predict
the criticality probability using the trained Csel on all
training samples. Critical frames were selected as
those with a probability above 70% of the maximum
probability within each critical sequence. All remaining
frames were considered as non-critical and finally, Cp

crit

was built on this data set.
To allow humans to gain insights into why the

RF classified sequences as critical or non-critical, we
applied SHapely Additive exPlanations (SHAP) [25]
to visualize HOG features used by Cp

crit in an image.
Figure 2 shows positive SHAP values (contribute
to decision ”non-critical”) in green and negative
SHAP values (contribute to decision ”critical”) in red.
Evaluating the AI systems through the lens of XAI
enables the assurance that the decision spaces match
with actual critical interventions in the manufacturing
process. In this case study, SHAP was chosen as
the appropriate XAI tool, because of its theoretically
sound foundation and also its model-agnostic nature.
Many of the current XAI tools for computer vision task
are specifically developed for NN. Moreover, as the
underlying ML model is a random forest, SHAP was
chosen to be the most suitable XAI approach.

3.3. Evaluation

To gather insights on the applicability and possible
obstacles in this validation approach, a group of
employees of the pharmaceutical company and a GMP
auditor performed the proposed validation approach
for the developed AI system. Afterwards they were
interviewed and asked about their experience.

Data collection and participants - A group of
four employees of the pharmaceutical company and an
external participated in the evaluation: (1) the director
of innovation of the pharmaceutical company, (2) the
teamlead of operators of the sterile filling line the
AI system was implemented for, (3) one from the
manufacturing quality assurance (MQA) department,
(4) and one responsible for the validation of aseptic
production processes, and (5) an external GMP auditor.

Semi-structured interviews to gather their experience
in and opinions on the validation approach were
conducted after its completion. Employees directly
responsible for implementing the validation process
(i.e., interviewees 2-4) were interviewed twice in
group interviews: Once after testing the AI system
without the XAI component and a second time after
completing the whole validation approach including the
XAI component. Special focus in those interviews
was put on the perceived differences between the first

half of the procedure, in which they solely examined
the performance of the system as a black box, and
the second half where the XAI component is included.
Interviewee 1 and 5 were interviewed separately and
only once on the whole validation approach.

Data analysis - The interviews, conducted via
web-conference, were audio recorded and transcribed.
The transcripts were analysed using semantic thematic
analysis [31] to identify and organize barriers as well as
positive aspects of the evaluation process in general, and
with regard to the XAI component in particular.

4. AI Software Validation approach

The validation concept consists of four phases which
may be completed step by step or repeated several times.
The first phase – Set-up phase – deals with typical
design tasks of developing and implementing a new IS.
The following Technical set-up and performance phase
addresses AI specific development steps for developing
a reliable AI system. Up to this point the procedure
is similar to validation approaches or performance
evaluations of black box AI systems. While predefined
performance measures may be sufficient for AI systems
in non-sensitive areas, the proposed validation concept
takes additional efforts to validate the developed AI
system and to ensure that it acts as intended. The third
XAI Assessment phase introduces the proposed XAI
approach showing the appropriate use of decision rules
and/or spaces. Building on this assessment, the last
phase, the Stress test, attempts to test the limits of the
AI system’s applicability.

4.1. Set-up

The Set-up phase focuses on initial design and
planning activities. Following an idea for a new
application of an AI system the Set-up phase starts
with traditional business considerations in mind. In
the first step - Use case definition - all initial planning
activities take place. Here, the project is set up.
The initial requirements for the AI system, necessary
further planning and implementation steps as well as
responsibilities are defined. When the IS’s concept
is properly analysed and considered worthwhile for
further development, suitable business units, employees,
experts and/or third-party suppliers for further project
steps need to be determined.

Form expert team - Based on the use case
definition, the expert team should be formed. It
will be responsible for all validation steps and thus
needs to have the proper knowledge and authorization.
The team should include domain experts, end-users,
quality assurance, project management and technology

Page 1504



Figure 3. Developed validation approach

suppliers. As technology suppliers bring expertise into
the development from a technical perspective, domain
experts provide domain knowledge that is necessary
to determine the requirements and functionalities of
the specific AI system. For the assurance of
the proper validation and subsequent achievement of
quality standards of the AI systems, quality assurance
(QA)/auditing experts are needed to provide guidance
in pinpointing critical aspects of the validation process.

Initial risk assessment - The expert team conducts
an initial risk assessment for the implementation of
the AI system. This can follow different methods
according to the company’s policies or the specific
situation. Depending on the criticality of the use case,
the risk assessment should cover all aspects that could
be affected by the implementation of the new AI system
including business and quality issues, technical and AI
specific risks, risks to the end-users and risk to society.

4.2. Technical Set-up and Performance

System specification – This step occurs concurrently
with the definition of the training and test data set
for the planned AI system grouped into the Technical
Set-up and Performance Test phase. In this step, the
requirements are investigated and appropriate system
specifications are agreed upon. Among these are
decisions about the features of the AI, the ML approach
used to satisfy these requirements, and the performance
metrics. This is a step where especially the expertise
of domain-experts and quality assurance comes into
play. Depending on the context of the use case possible
industry standards on acceptance criteria etc. might
exist that need to be followed. In this step the XAI
component needs to be specified. Depending on the use
case, a suitable decision has to be made about which
XAI component will be applied and how it will deliver
the explanations needed for the validation.

Training data set - The step of the compilation of
the training data set concurs with the elaboration of the

system specifications. To ensure that the training data
set represents everyday processes (which the AI system
must be able to handle appropriately) a team of domain
experts and technology providers need to elaborate a
scheme on how to compile a satisfactory training data
set. The scheme must consider traditional data issues
such as correct distribution, labelling, potential biases,
completeness and sources as well as domain specific
issues that may arise in the context in which the AI
system is going to be used. According to this scheme the
training data set needs to be created (and documented).

Test data set - Defining the test data set is a crucial
task. It needs to adequately represent the real-life
challenges the AI system is intended for. It should
include as many scenarios as possible which are likely to
happen under regular circumstances. Furthermore, it has
to be assured that the distinction between the training
data set and the test data set has been handled adequately
to avoid overestimation of the systems performance.

System test – The system test serves as a basic
performance test of the developed system to assure
it meets the required targets. It’s tested against the
system specifications and the results are compared with
the predefined acceptance criteria. Depending on the
results, the system is either send back into revision or
ascends into the next phase of the validation concept.

4.3. XAI Assessment

Expanded Risk Assessment – If the results of
the performance test are satisfying, the initial risk
assessment gets re-evaluated and expanded according to
the new information gathered in the Technical set-up and
performance test phase. Specific decisions made in this
phase may lead to additional risks that were or could not
have been considered beforehand. Again, in this step
possible mitigation approaches for the identified risks
may be defined and decided upon.

XAI-informed Risk Assessment – In a subsequent
step a risk assessment is conducted that specifically
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analyses the risks associated with the black box
characteristics of the developed AI system. It
should investigate risks of the AI system using
non-relevant/trivial information/data as decisive factors
for its decisions and weigh the possible consequences
of the system showing such behaviour. For instance,
the AI system might classify an intervention as critical
solely because of the presence of a non-stationary
component in the assembly line and not consider the
actual intervention space as the crucial area for its
classification. The results of this step should provide a
round-up of critical areas/decision spaces the AI systems
should comply with to be considered appropriate for its
purpose.

XAI component is applied to the model to be
evaluated - After identifying the critical decision spaces
of the AI, the XAI component is applied to the results
of the system test where it pinpoints the features/areas
considered for the decision taken by the AI. The expert
team needs to assess if the areas shown comply with
the defined decision criteria and are both meaningful
and suitable for each particular decision. If the
decision-making of the AI is satisfactory, based on
the XAI evidence, the validation procedure continues,
otherwise the AI system is sent back to be revised.

4.4. Stress Test

Define boundary conditions - After the XAI
assessment phase has concluded, the final validation
stage of the AI begins. Based on the evidence
from the previous phases the expert team identifies
critical areas and defines possible boundary conditions.
These boundary cases consist of unlikely but possible
scenarios for the AI system and are established
to evaluate whether the system behaviour matches
the requirements for specific boundary conditions.
Considerations about the inclusion of adversarial
attacks, random interventions etc. can be included.

Compile stress test data set - After defining the
boundary conditions, necessary data has to be compiled.
Real processes data are preferable, but synthetic data are
acceptable if that is not possible or unsafe.

XAI component is applied to stress test data set – As
a last step the XAI component is applied to the stress
test data set. This step serves as a final examination and
assurance of the limits of the AI system and whether
they correspond to the requirements of the specific use
case. Similar to the steps in the Risk Assessment phase,
the stress test data acts as the input to the AI model and
the results are then investigated with the help of the XAI
component. If the AI system behaves as expected, the
results can be documented and evidence for an audit is

available. In the case that limitations of the AI system
are detected, the AI system needs to be revised.

Revision plan - The revision plan depends on
the identified limitations. It might include minor
adjustments like adding a particular instance to
the training data or big adaptations like changing
specifications or even the underlying ML algorithm.
Furthermore, this step can be the starting point of
iterations in the development process of the AI system
or might not come into effect at all.

Although some steps of the developed validation
approach by themselves might not be considered novel,
a systematic approach on how to integrate XAI in
AI validation endeavours has not yet been examined
for sensitive areas. The presented approach provides
a general guideline on how complex and opaque AI
systems might be validated to achieve the required level
of transparency in critical use cases. As the validation
approach does not specify underlying ML models of an
AI system or specific XAI tools, the approach can easily
be adapted to be used in different environments, even
outside critical use cases.

5. Discussion of evaluation results

The validation approach that is evaluated in this
section was carried out in practice for the AI system
presented above. A total of 213 interventions into
the aseptic core were recorded and evaluated. These
interventions were in the first step evaluated according
to the system test in phase two. In the next step, the same
set of interventions was examined in the XAI assessment
phase. The employees of the pharmaceutical company
examined the whole data set including all correctly as
well as all incorrectly classified interventions.

Phase One- Set-up Phase Regarding traditional and
AI validation approaches the director of innovation
stated that ”[i]n this phase it is possible that people
say ’Well there are not really any differences between
traditional validation and this approach’. [... T]here
are not many options to do this differently”. Others
also did not consider this phase particularly different
compared to traditional software validation. Some
particularities in the use of AI were mentioned as
needing to be considered during the Use Case Definition
and the Initial Risk Assessment. Those were the
precise and suitable formulation of requirements or
acceptance criteria, but also consideration of AI-specific
risks. The GMP auditor noted that the steps might
not be simply linear, but may resemble ”[...] more
of a cycle (iterative process), where the steps blend
into each other”. Specific risks might emerge
with a particular AI component and that again can
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influence the requirements of the AI system. Extensive
communication on the requirements and limitations of
the AI systems is also seen as necessary [4]. The GMP
auditor also argues that standards or guidelines from
regulatory bodies would benefit the set-up phase.

Phase Two- Technical Set-up and Performance
In phase two, differences between traditional
validation approaches and our proposed approach
were identified. Citing the need for high quality training
data, interviewees agreed that traditional validation
approaches need to be adapted to include this AI
specific issue: Issues of data and data handling have to
be incorporated much more prominently. In this regard
the documentation of AI differs compared to traditional
software, especially for the documentation of training
and test data sets and the performed data preparation.
However, documentation standards for AI are missing
and more research is needed [1].

Interviewees highlight that testing of AI based
systems and traditional software differs. The director of
innovation points out that “[...] traditional qualification
or software validation only asks the question ’does it
work or not’. Here you do have to think about it
in more detail”. With traditional software, decision
rules are explicitly implemented and test cases designed
accordingly. For AI to ”think in more detail” entails
uncovering the decision rules and to design boundary
cases for testing. Similar concerns regarding AI testing
are also raised in the literature [20, 21]. The integration
of AI systems in business processes was identified as
another challenge. Several interviewees considered
it a significant issue to make tacit knowledge about
existing processes explicit so it can be included in
the requirements specification and the compilation of
training and test data. However, working through these
issues resulted in a significantly deeper understanding of
existing processes as well as better knowledge on how to
transfer the insights gathered to the AI system. The need
for standards or guidelines for the validation of AI was
highlighted in this phase.

Phase Three- XAI Assessment The application of
the XAI component was seen as important to create
trust in the AI system. The XAI component, e.g.,
helped to detect bias in the training data set. Early
versions of the AI system decided on the criticality of
an intervention based on the presence of a second hand
inserted into the isolator (Figure 4). In the training
data set one-handed interventions were used to depict
critical interventions, while two-handed interventions
mostly depicted non-critical interventions. Traditional
quantitative performance metrics were still relatively
good.

Based on such experiences our interviewees

Figure 4. Example of detected data bias using the

XAI component. The AI was focusing on the second

hand (upper right corner) to determine criticality

considered this approach a good way to make the
decision process of the AI comprehensible. As the
director of innovation noted with regard to the example
above: ”We would have never been able to recognize
it using a black box approach. It would probably be
impossible.” This is a specific example of the generally
accepted view that without XAI it is not possible to
comprehend the deeper underlying reasoning of many
AI systems [26]. Another useful result of using XAI
was that in some cases it also allowed to counter-check
if the decision spaces and criteria defined in the systems
specification steps in phase two were set precisely
enough.

Interviewees agreed that XAI helped to understand
the AI system by making the inner workings of the AI
transparent. As the MQA representative put it: ”In
normal validations [non AI] you would see that the
software decides incorrectly, but one does not really
know why. However, by having it processed on this
level of detail for this AI system, everything becomes
more comprehensible”. XAI was also considered as
beneficial for recognizing errors or oversights that might
have happened in the previous steps.

Phase Four- Stress Test Interviewees considered
the definition of boundary areas and the examinations
on whether the AI system would work in the limits
of these boundaries to be sound. It was remarked
that it seemed a good approach to identify boundaries
not just based on the initial requirements, but also
to derive such boundary areas or condition from
the specific implementation of the AI system itself.
This possible adjustment of requirements based on
the findings from the XAI evaluation might be a
possible countermeasure for the often cited lack of
specifications and defined requirements in the beginning
of a development process [20]. It also takes into
consideration that the explanations on the decision areas
from different AI systems may differ [7]. Thus, the
setting of the boundaries is done after a first examination
with the XAI component was conducted.

The evidence showing that the AI systems works
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reliably in the defined boundaries builds trust in the
application. As the teamlead of operators said: ”Trust
in a system is always necessary, but especially in our
sector it is necessary to have provable evidence. In my
opinion this approach that we just executed with the
XAI component, does this well.” The MQA employee
remarked that the XAI component delivers insights in
cases where humans could have difficulty classifying an
intervention where the technical camera set-up does not
always provide the most suitable perspective for human
review. Additionally, it was again remarked that such
tests on whether it is even possible to achieve not just
performance but also behaviour goals through the use
of an XAI component were happening relatively late in
the validation procedure. This further strengthens the
argument that a more agile development and validation
approach is preferable for AI.

Concluding remarks The final question on whether
one would trust to deploy an AI system that was
validated according to the proposed validation approach
was unanimously answered positively. The additional
effort required by the proposed approach not only led
to new insights into the behaviour of the AI, but also
to new insights about the implemented case (especially
about the boundary cases) and the production process
in general. The implementation of the sufficiently
validated AI system also enables a continuous quality
assurance of the production process that otherwise
would not be feasible.

Implication for research and practice The evaluation
of the validation approach showed that XAI can be
successfully utilized to support validation efforts in
sensitive areas. However, the repeated mentioning of
missing standards and regulations indicates that there is
still a lot of uncertainty for all parties involved. As there
are no clear criteria for the amount of data and their
quality, criteria have to be defined by those examining
the AI system (i.e., internal validation, external auditor,
certification authority). Further, the evaluation results
showcase that a more agile validation approach for AI
is preferable and that validation considerations should
be included early in the process. The developed
validation approach encourages this iterative approach
by incorporating possible loops after every phase of
the validation. Thus, moving away from traditional
waterfall approaches to a more agile approach is needed
in the pharmaceutical industry.

Thus, XAI approaches should not solely be utilized
after the development of an AI system to assure the
reliability of an AI system. An early inclusion of
XAI approaches could be beneficial for a more efficient
development and validation process. However, the
evaluation results highlight that this validation approach

and also the use of an XAI component takes much more
effort than traditional approaches.

Contribution to existing research The proposed
validation approach and the results of its evaluation
showed that XAI does help to collect sufficient evidence
about the underlying decision behaviour of the AI to
perform a software validation. Through the inclusion
of steps like the evaluation with an XAI component
and the specifying and testing of the boundaries of the
AI sufficient evidence can be gathered to validate the
AI. Thus, we demonstrated a way to reveal the inner
workings of AI for a successful validation, which is
one of the main challenges for the integration of AI
systems in sensitive use cases. The evaluation further
shows that it is better to incorporate important validation
requirements already in the development process.
Overall, it became clear that linear development
approaches are less suitable. A more agile and iterative
approach is needed allowing to step-wise discover the
requirements and the underlying mechanisms of the AI.
Both documentation and testing of AI based systems are
different compared to traditional software. We conclude
that AI validation objectives need to be considered
early on and that the overall validation process is more
laborious compared to traditional software validation
due to the iterative nature. One major reason for
increased efforts are insecurities caused by missing
guidelines and regulations. In particular, guidelines are
needed to support a more flexible, iterative approach
in contrast to waterfall approaches favoured in current
guidelines and proposals on how to deal with test and
training data as well as how to perform AI testing.

6. Conclusions and Outlook

We propose XAI to validate AI systems in
sensitive use cases. In a joint research and
development project academic researchers, industry,
technology, and GMP auditing experts developed a
validation approach that was successfully applied in
pharmaceutical manufacturing. However, aspects of
the developed validation approach remain a case of
assessment for the company implementing the AI
systems. The validation approach is primary designed
for sensitive use cases and might be too laborious
for less sensitive use cases.Thus, we encourage future
research to focus on the elaboration and establishing of
standards and guidelines for sensitive use cases like the
pharmaceutical industry. This may help to scale down
the validation efforts needed and in consequence make
thorough validation approaches more accessible also for
less sensitive use cases.
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T. Doms, T. Vogt, S. Hochreiter, and B. Nessler,
“Trusted Artificial Intelligence: Towards Certification
of Machine Learning Applications,” arXiv preprint
arXiv:2103.16910, 2021.

[5] W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and
K.-R. Müller, Explainable AI: Interpreting, Explaining
and Visualizing Deep Learning, vol. 11700. Springer
Nature, 2019.

[6] A. B. Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser,
A. Bennetot, S. Tabik, A. Barbado, S. Garcı́a,
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