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Abstract 

In this article, we propose a network approach to 

understanding team knowledge with archival data, 

offering conceptual and methodological advantages. 

Often, the degree to which team members’ possess 

shared knowledge has been conceptualized and 

measured as an aggregate property of a team as a whole. 

Rather than an aggregate property, however, we argue 

that shared team knowledge is more appropriately 

conceptualized as a network of knowledge overlaps or 

linkages between sets of team members. We created 

shared knowledge networks for a sample of 1,942 

software teams based on members’ prior experiences 

working with one another on different tasks and teams. 

We included metrics representing topological features of 

team shared knowledge networks within predictive 

models of team performance. Our results suggest that 

network patterning provides additional predictive power 

for explaining software development team performance 

over and above the effects of average level of knowledge 

similarity within a team.  

1. Introduction 

Teams are fundamental units of work in 

organizations [1-3] and particularly useful for 

accomplishing large, complex tasks. To be effective, 

teams must align with regard to members’ “taskwork” 

(i.e., activities needed to complete the task) and 

“teamwork” (i.e., activities needed to collaborate). This 

often requires that members possess somewhat similar 

knowledge related to tasks and one another [4]. When 

teams come together to perform a collaborative task, 

they bring with them knowledge derived from their 

familiarity with prior tasks and teams. Whereas some of 

this knowledge is held individually, some knowledge is 

shared among some, or all, other members, forming 

networked structures of knowledge overlaps among 

members. We adopt a prior definition of team knowledge 

as “the collection of task- and team-related knowledge 

held by teammates and their collective understanding of 

the current situation” [5], encompassing both 

individually held knowledge as well as the patterns of 

knowledge overlaps among members [6]. There is 

increasing evidence that knowledge management (KM) 

promotes factors that lead to superior performance [7]. 

We suggest that understanding the effects of shared 

knowledge networks on team performance can 

contribute additional insight for effectively managing 

knowledge in teams.  

Following prior definitions of knowledge workers 

by Davenport, Reinhardt and colleagues [7, 8], Jennex 

concluded that engineers are knowledge workers who 

work on non-routine problems and treat knowledge as 

their main asset [9]. Software teams in large-scale 

software production tasks are often composed of 

software engineers and other knowledge workers who 

rely on: previously acquired knowledge of tasks (e.g., 

tools; the product under development; programming 

languages); and/or one another to do their job. Moreover, 

research shows knowledge management success is 

affected by team members’ abilities to get the right 

knowledge to the right user and apply new knowledge to 

improve performance [10]. A similar argument appears 

in the literature on expertise coordination [11, 12].  

When members’ are familiar with similar 

knowledge sets, they are better prepared to access the 

right knowledge by the right user at the right time, thus 

“gluing”  individually held knowledge into a coherent 

whole. Possessing similar knowledge is particularly 

important when tasks are highly interdependent and 

intensive activity coordination is critical [13]. Indeed, 

team knowledge is increasingly recognized as important 

for organizations in various activities, including research 

projects and patents [14], collective behavior [15], and 

coordination across systems [16].  

Often, shared knowledge in teams has been 

conceptualized and measured as a shared or aggregate 

property of a team as a whole [17]. However, given that 

different team members may have experienced a variety 

of different task and team contexts, teams are often 

characterized by complex patterns of knowledge 

similarities among members. Thus, adopting a network 

approach to understanding shared knowledge in teams 

[18] is likely to be more appropriate for modeling shared 

knowledge in software teams as compared to an 

aggregate approach—especially for those teams of mid- 

to large-size. A network approach can provide more 

nuanced depictions of the ways in which knowledge is 

organized and structured in a team as compared to simple 

aggregate measures. For example, there may be 
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members who are knowledge isolates, posing potential 

problems for team collaboration; knowledge similarities 

may be highly concentrated among a subset of members 

or widely spread throughout the team; there may be team 

members that possess similarities with members of 

disconnected subgroups  who share no similarities with 

one another. Finally, the knowledge that a member 

shares with two others may not be shared by these other 

members themselves.  

However, except for very few studies, a network 

approach to knowledge similarity has not been 

adequately investigated in the  extant literature. Much 

still remains to be understood regarding whether and 

how knowledge similarities aid team performance. Thus, 

in this study, we purse the following research question:  

Do properties of team knowledge similarity networks 

provide additional predictive power to explain 

software team performance beyond the effects of 

aggregate measures?  

One concern raised with team cognition research is 

that there is an abundance of constructs defined (e.g., 

shared knowledge, team mental models, transactive 

memory, and familiarity, etc.) [19]. In the present study, 

we focus on shared task and shared team knowledge 

familiarity linkages as mechanisms for channeling 

knowledge to the right person for the right task [20]. 

Familiarity metrics have been used in research for many 

years [2, 21-25] and can be easily extracted from archival 

software data. Moreover, researchers on software 

engineering have developed KM tools to identify and 

quantify expertise based on such familiarity [26]. In this 

study, we employ similar familiarity metrics but adapt 

them to identify overlaps in familiarity among members 

based on prior experiences with certain tasks/teams. 

In the remaining sections of this paper, we present 

our theoretical arguments and rationale for the 

importance of the network approach to the study of team 

knowledge. We then provide our theoretical 

development and hypotheses related to shared task and 

team familiarity. We then discuss our methods, present 

our results, and discuss the implications of our study.  

2. Team Knowledge and Network Structure  

Knowledge management has been conceptualized in 

the extant literature as the practice of selectively 

applying knowledge from previous experiences of 

decision making to current and future decision making 

activities with the express purpose of improving the 

organization’s effectiveness, which is enhanced when 

there are multiple channels for knowledge exchange 

[20]. Consistent with this view, we argue that knowledge 

is channeled most effectively towards collective task 

goals when there is a shared knowledge base that 

connects the various parts of individual knowledge into 

a cohesive whole. This argument parallels those that 

have been made for various shared cognition constructs 

like team mental models [27], shared schemas [28] and 

transactive memory systems [29, 30]. 

So, what is the best way to represent the shared 

knowledge of a team? For dyads or 3-member teams 

with evenly shared knowledge, this question can be 

readily answered by applying one of the many shared 

mental model measures in the extant literature. However, 

with larger teams with knowledge sets that are unevenly 

shared among members, the representation of team 

knowledge constructs becomes more complex and 

simple averages can only provide an incomplete picture. 

Thus, a network analytic approach, which has been used 

successfully to study other social structures, is more 

appropriate for modeling knowledge networks. 

Specifically, team knowledge similarity is 

inherently a social construct leading to other social 

behaviors – individuals share and exchange knowledge 

through communication and actions, creating cognitive 

relationships that help explain team dynamics, process, 

coordination and performance. A network approach 

allows the use of methods and tools to analyze complex 

relations in systems of social actors [31] with knowledge 

ties between among them [32, 33], describing how team 

and task familiarity are held, shared, organized and 

distributed among members, similar to how individual 

knowledge structure is represented in the cognitive 

sciences [28, 34, 35].  

One strength of the network approach is that team 

knowledge distribution can be analyzed at any level – 

individual, dyad, subgroup, ego network, or team – 

helping to identify important characteristics like 

centralities (e.g., proportion of knowledge ties to other 

members), isolates (e.g., members with no knowledge 

ties to other members) and triads (i.e., transitivity). Such 

an approach can better explain a team’s ability to carry 

out tasks in ways aggregate team knowledge measures 

cannot [36]. For example, we can identify 

knowledgeable members who serve as knowledge 

exchange hubs, influencing how members coordinate 

information [37], provide useful knowledge to peers 

[38], and attain higher individual [39] and team [40] 

performance. Understanding this is especially useful as 

teams become larger, with more complex knowledge 

distributions [16]. Furthermore, popular theories applied 

successfully to social networks, such as “structural 

holes” (the lack of links between adjacent individuals, 

[41] and “weak ties” (connections to those outside one’s 

closest members), [42] can be investigated with team 

knowledge networks. 

Prior seminal research has also employed individual 

and relational attributes to describe aspects of teamwork 

and interaction dynamics [43, 44]. Relational knowledge 

such as shared knowledge, influences how members 

interact, exchange knowledge [45], communicate [46], 

Page 4193



 3 

coordinate [47, 48], and perform [49, 50]. These 

knowledge relationships create complex team 

knowledge structures that cannot be explained with 

simple aggregation of the members’ knowledge [34], 

thus the importance of a network approach. 

3. Shared Task and Team Familiarity 

Jennex and colleagues surveyed 30 members of a 

knowledge management (KM) journal editorial board 

and outlined several ways to define KM success, 

including process success (e.g., productivity). They 

concluded that KM is successful when knowledge is 

reused to improve organizational effectiveness by 

providing the appropriate knowledge to those in need, 

when they needed it [51]. We  suggest that it is the 

similarities in members’ knowledge with regard to 

“taskwork” and “teamwork” [19], which provides the 

conduit to locate expertise when needed. Without this 

overlap, individual knowledge within the team would be 

disconnected and less effective. 

To understand the degree to which members’ 

possess similar knowledge, we leverage the concept of 

familiarity, which in organizational teams, has been 

defined as “the knowledge that members of a team have 

about the unique aspects of their work” [52], such as 

knowledge about the task itself and about other members 

on the team [53]. As members of a team work together 

over time, they become familiar with the task domain 

and with each other [54] and develop a common 

knowledge base through which team interaction and 

location of expert sources in the team is facilitated  [55]. 

Thus, members’ experiences on prior teams are one way 

of capturing their level of familiarity with regard to task 

and/or teamwork.   

Studies have shown the positive benefits of 

familiarity on team performance in mining [22], flight 

simulation [56], problem solving [24, 53], product 

development [57], surgical teams [58], and other tasks 

[2]. For example, a prior study [21] found empirical 

evidence that individual task and team familiarity 

increased performance in software teams. Consistent 

with this work, another study found that shared task 

knowledge based on peer-rated domain familiarity had a 

positive effect on team performance when measured as 

an aggregate - the average task knowledge shared by 

team members [17]. However, the effect of aggregate 

shared knowledge disappeared when the analysis 

included network variables that accounted for more 

predictive power, which also provided insights into 

various aspects of performance. For example, the 

number of isolates had a negative effect on task 

coordination, whereas task knowledge centralization had 

a positive effect on strategy coordination, and the 

proportion of cliques in the team was negatively 

associated with team cohesion. This prior study provided 

empirical evidence that a network analysis perspective 

can provide more nuanced explanations than individual 

or aggregated team knowledge measures alone. 

In the present study we use archival data to evaluate 

whether adding team knowledge network variables 

based on shared familiarity yields deeper insights than 

those found with individual [22, 25], aggregated [21, 24] 

familiarity measures on whether such familiarity overlap 

drives team performance and how. Prior studies have 

found that effective knowledge management has a 

positive influence on business process, including 

productivity [59]. But we argue in this study that it is the 

knowledge relationship structure within a team which 

will affect how it interacts and performs. Therefore, we 

examine whether the structure of shared instances of 

working together on previous project tasks  and with 

each other are related to team performance. Following 

this reasoning, we investigate the effects of shared task 

and team familiarity relational network properties, such 

as centralization, isolation and transitivity on team 

performance. We discuss these further next and illustrate 

them in Figure 1. 

 

Figure 1. Network variables illustration 

Shared Team and Task Familiarity. Because 

members who have worked together on previous tasks 

are likely to have had similar learning experiences, we 

posit that members’ shared experiences on prior tasks 

and/or teams can enhance team performance. Two 

developers who have worked on the same files and 

modules in the past are more likely to have better 

grounding and more shared vocabularies about technical 

terms and the software product they are working on. 

Likewise, those who have worked together in the past 

can be expected to have developed communication 

patterns and other coordination methods, which may be 

beneficial to performance. Both types of shared 

familiarity are likely to help the team develop mutual 

knowledge [60] and shared mental models [35], which 

have been found to affect team performance. Therefore, 

we posit:  
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H1. Shared task familiarity is positively related to 

team performance. 

H2. Shared team familiarity is positively related to 

team performance. 

Familiarity Centralization. Whereas we argue that 

shared task and team familiarity are beneficial, we also 

anticipate that their effects may be influenced by whether 

familiarity is shared widely across the team or 

concentrated within a few dyads. Prior studies have 

found that when team knowledge is centralized, 

performance diminishes [17, 61]. A centralized network 

is one in which one or just a few members share a lot of 

familiarity, whereas the rest not so much. Consequently, 

we expect a that more widely distributed shared task and 

team familiarity will be associated with higher levels of 

performance, compared to networks in which only a few 

members share familiarity. Therefore, we posit:  

H3. Shared task familiarity centralization is 

negatively related to team performance. 

H4. Shared team familiarity centralization is 

negatively related to team performance. 

Familiarity Isolation. Prior studies have also found 

that knowledge isolates in student teams have a 

detrimental effect on team outcomes [17]. A member 

who is not connected to anyone else in the team in terms 

of shared task and team familiarity has little in common 

with the rest of the team. This could be beneficial if the 

isolated member is a very specialized worker, but most 

often it means that the teammate is just new at the job or 

has not spent sufficient time developing familiarity with 

modules, files and teammates. When members have 

different experiences, lack instances of working 

together, or are otherwise unfamiliar with one another, 

we expect to find a negative relationship with multiple 

performance outcomes relating to process and results. 

Therefore, we posit: 

H5. Shared task familiarity isolation is negatively 

related to team performance 

H6. Shared team familiarity isolation is negatively 

related to team performance 

Transitivity. The effect of transitivity has been 

studied in depth in the social networks literature. If 

member A is connected to B and C, these relationships 

are transitive if B is also connected to C. Consequently, 

networks with high degree of transitivity are full of 

“triads”, i.e., 3-member clique triangles. In contrast, 

links in low transitivity networks exhibit lots of “stars” – 

i.e. members linked to members who are not connected 

to each other. The research literature on social network 

transitivity suggests that transitivity leads to higher 

integration of members within the network [62]. To the 

best of our knowledge, there are no studies that have 

explored the effect of knowledge transitivity in teams. 

We extrapolate these arguments to team knowledge 

networks and argue that, when team members work 

together in an interdependent task, coordination is 

enhanced when there is consistency and more integration 

in the knowledge content being shared. In the context of 

shared familiarity, three-member cliques will exhibit 

more homogeneously shared knowledge beyond what 

single dyads share, which will help members anticipate 

each other’s actions and perform better. Thus, we posit: 

H7. Shared task familiarity transitivity is positively 

related to team performance. 

H8. Shared team familiarity transitivity is 

positively related to team performance. 

4. Network Analytics Approach 

We employ a network analytic approach using 

software production data from an archival data set and 

capture team knowledge structure metrics represented by 

shared familiarity relational ties [63]. We describe how 

we computed each network variable in the next section. 

The overall strategy was to extract software production 

data from a configuration management system and then 

use this data to construct network edgelist tables that 

contained every pair of developers in each team, with 

archival data statistics about their shared familiarity with 

same software modules and same files, and also with 

familiarity working with each other over time. We then 

used these shared familiarity metrics as tie weights, 

which were then used in the computation of network 

variables. Using archival data to compute these network 

structure variables is a powerful way to analyze teams  

without the bias of self-report surveys. This approach 

allows for the computation of aggregate measures, while 

retaining the structural detail that comprises knowledge 

in the team, which is particularly useful for larger teams.  

5. Sample and Data Analysis 

We employed archival data from software 

development teams for this study. We chose the software 

task because its activities are highly interdependent and 

therefore require a substantial amount of knowledge 

sharing to carry out the task effectively. Software tasks 

are very useful for archival data analysis studies because 

most software organizations keep detailed software 

production records and statistics. Most large software 

development organizations employ configuration or 

management systems (CMS) to help developers 

coordinate software modifications with others. For 

example, when a developer needs to make a change on a 

given file (i.e., called a “delta), the CMS locks any file 

that may be dependent on the file being modified until 

the work with that file is complete. When the delta is 

finished, the file is checked back in and the CMS unlocks 

the dependent files. More importantly for our study, the 
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CMS is constantly recording statistics about each 

modification, such us: who made the modification and 

when;  how long it took to complete; how many lines of 

code were added, deleted or modified; and which 

modules, files and subsystems were affected, among 

many other things. While such datasets do not contain 

validated scales or attitudinal variables, the records 

available provide an excellent source of data to study 

software team performance by constructing individual, 

dyadic and team level variables. 

Software modifications in this organization are done 

via “modification requests” (MRs) and “deltas”. An MR 

is an approved project to either develop new 

functionality or update existing functionality. An MR in 

the organization we studied is implemented by a 

dedicated team, which generally stays together until the 

completion of the MR. An MR has a formally approved 

budget, team members and other resources. Naturally, an 

MR generally contains more than one software change. 

A “delta” is the basic unit of software change in this 

organization, consisting of the changes made to a single 

software file by one developer during a single check-

out/check-in cycle. Deltas are carried out by members of 

the MR team, which allowed us to compute knowledge 

relationships between all pairs of developers in each MR 

team, based on their familiarity with each other and with 

specific software modules and files. 

We analyzed data from 1,942 MRs containing a total 

of 672,209 deltas. This is a large software product and it 

contains several thousand MRs. For this study, we used 

all MR’s for teams of 6 to 12 members. We selected 

teams of 6 or more members because some network 

structural properties are not as observable or relevant 

with smaller teams. We limited the team size to 12 

because as teams get larger some of the network metrics 

(e.g., network density) become more sparse. Generally, 

larger networks are typically analyzed individually, 

which is what we are doing in a separate study. In the 

present study, we compute network metrics for each of 

the MR teams and then use these metrics as variables in 

a predictive regression model.  

Performance in software development is generally 

measured in terms of process (e.g., on time, on budget) 

and product performance (e.g. meet requirements, few 

errors) [64-66]. To test our hypotheses we constructed a 

regression model with software development time (in 

days) as the outcome variable, along with various 

predictors. We selected software development time 

(reversed) as our dependent variable because it is one of 

the most widely used measures of software process 

performance [67, 68]. We tested the percentage of error 

repair deltas in MRs as a measure of product 

performance, but we did not find interesting results, most 

likely because MR’s must be error free after testing, so 

more error repairs simply increase the development time. 

Because QQ-Plots revealed that the regression 

residuals were not normal, we log-transformed this 

variable, yielding normally distributed residuals. Also, 

because we were interested in a performance metric, we 

modeled the negative value of the logged variable (i.e., 

higher values represent less development time, which is 

considered higher performance). 

We started with a baseline regression model with 

several control variables known to affect software 

development time, including: team size; number of 

modules spanned by the MR (i.e., a proxy for software 

complexity); number of sub-systems affected by the 

modification (i.e., another measure of software 

complexity); and effort distribution (i.e., dispersion in 

the number of deltas contributed by each team members 

using a Gini coefficient of homogeneity ranging from 0 

if one person developed all deltas, to 1 if each developer 

contributed an equal number of deltas). We then 

specified a full regression model by adding to the 

baseline model the network structure variables we 

constructed. We evaluated all possible regression models 

between the baseline and full model using the Stepwise 

variable selection method. The criteria for removal or 

inclusion of variables in the Stepwise procedure was set 

at p=0.15, which is customary in the Stepwise method, 

which is a more inclusive threshold. 

To construct the network variables we adapted 

measures from previous studies of familiarity, which are 

generally  based on counts of how many times an 

individual has worked in the past on a given task  (i.e., 

task familiarity) [21, 23, 25] and with other members 

[21, 24] (i.e., team familiarity). When looking at a given 

measure of familiarity for any two members, some of 

that familiarity will be unique to each individual (i.e., 

unshared) and some will be overlapping (i.e., shared). To 

construct the shared familiarity version of these metrics 

we used similar counts, but only counting the modules, 

files and projects in which both members of the dyad had 

worked. We used a predictive analytics method, 

blending standard network analysis to compute network 

structure variables for each of the teams in our sample, 

and traditional regression methods to develop the actual 

predictive model. For each MR team, we analyzed each 

dyad in the MR team and then computed:  

 Shared Task Familiarity (Modules) as the total 

number of modules in which both members of the 

dyad had contributed deltas to in the past. 

 Shared Task Familiarity (Files), same as (a) but using 

the total number of files in which both members had 

contributed deltas to in the past. 

 Shared Team Familiarity (MR’s) as the number of 

times the pair had worked in the same MRs in the past.  

We then wrote an R script to loop through all the 

dyadic relationships for each MR to construct the 

following network structure variables for each team, and 
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for each of the three shared familiarity metrics (i.e., 

team, task-modules and task-files): 

 Degree Centralization – degree centrality is the 

number of ties a member has with other members (i.e., 

how many modules, files and projects he/she shares 

with others). Degree centralization measures how 

much members’ centralities deviate from the most 

central member, with higher values indicating more 

centralized shared knowledge. 

 Betweenness Centralization – betweenness 

centrality for a member measures how many pairs 

have to go through that member to connect with each 

other. Betweenness centralization measures how much 

members’ centrality deviate from the most central 

member. The higher the number, the more the team 

relies on one or few members to connect with each 

other.  

 Isolation – the proportion of members who have no 

shared familiarity connection with others in the team. 

 Transitivity – the proportion of triangle connections, 

relative to all possible triangles for a team of that size. 

6. Results 

Table 1 shows the summary results for the best 

regression model produced by the Stepwise method. As 

we discussed earlier, we are only showing the best set of 

predictors identified by the Stepwise process. This table 

only shows predictors that remained significant at the 

p<0.15 level as variables were removed and added to the 

model. We focus our discussion of results on the most 

significant predictors at p<0.05, with a brief mention to 

the remaining predictors. In reference to the control 

variables, all four variables were significant, as expected. 

Controlling for other variables, team performance 

diminished with team size and number of sub-systems. 

This result shows that software development is faster 

when teams are small and the software is less complex. 

Interviews conducted in prior studies [citation omitted 

for anonymity] revealed that MR teams work better 

when they were small because of the amount of 

coordination required in this type of work. Interestingly, 

team performance increased with the number of 

modules. This result seems counter intuitive, but we 

attribute this to the slight correlation in the number of 

sub-systems and modules; once we controlled for the 

number of subsystems, MRs that span more modules 

were completed faster. Performance also improved when 

effort distribution was more uneven, which was 

expected. When most of an MR development effort is 

carried out by a few software developers in the team, it 

took less time to complete than when development was 

more evenly spread across many developers.  

Consistent with H1 and H2, average shared task and 

team familiarity were strong positive predictors of team 

performance (β=50.374, p<=0.001 for average shared 

team familiarity (MR’s); and β=7.92, p<=0.001 for 

average shared task familiarity (Modules). However, 

when the remaining network structural variables were 

added to the model, their effect changed substantially 

and the predictive power of the model increased 

significantly (p<0.001). As Table 1 shows, the effect of 

average shared task familiarity (Modules) became 

negative and significant, and the effect for shared team 

familiarity remained positive but its p-value became 

marginally non-significant. These results provide strong 

support for our argument that network structural 

variables not only have strong predictive power over 

team performance, but can change results previously 

believed to be true, while providing a more nuanced 

understanding of the drivers of team performance.  

Table 1. Regression results 

Consistent with H3, shared team familiarity 

distribution had a negative effect on team performance, 

suggesting that having more widely shared team 

familiarity helps performance. Also, consistent to H4, 

we found that degree centralization of shared task 

familiarity (Files) had a negative effect on team 

performance, suggesting that more widely distributed 

shared task familiarity improves team performance. 

Surprisingly, the effect of betweenness centralization of 

shared task familiarity (Modules) had a positive effect on 

team performance. This result is the perfect illustration 

of why the network perspective matters when studying 

team performance. While one measure of centralization 

(degree) had one effect, the other (betweenness) had the 

opposite effect. Consistent with arguments in weak ties 

research [42], densely connected network actors may get 

overwhelmed. In contrast, consistent with “structural 

holes” arguments [69], a high degree of betweenness 

centralization can help members find and access 

specialized knowledge when needed.  
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Consistent with H5 and H6, shared task and team 

familiarity isolation was detrimental to performance. 

Having members with disconnected task and team 

familiarity from the rest of the team is never a good 

thing. Finally, we did not find support for H7 and H8 

about transitivity, but the positive and marginally non-

significant effects from these variables point to an effect 

in this direction, albeit this effects are not significant at 

the p<0.05 level. It may be possible that with a larger 

data set, these effects will become significant.  

7. Discussion 

The value of the network perspective resides not 

only on the ability to represent heterogeneous team 

knowledge structures better than with methods suited to 

homogeneous knowledge [see 5, 70 for further methods], 

but also for its facility in modeling dyadic knowledge 

relationships across multiple content areas in any way 

suitable to a particular research inquiry. For example, a 

dyad relationship could be modeled as knowledge 

similarity (e.g., shared mental model) or as distance or 

difference (e.g., knowledge disconnect). Further, when 

all the dyadic knowledge relationships are modeled into 

a single team knowledge network, this approach can be 

used to derive metrics of heterogeneity using popular 

measures like Gini coefficients [71]. It also facilitates the 

identification of important sub-groups, such as factions, 

communities and clusters. 

Our illustration shows that team network structural 

properties help us enhance our understanding of how 

knowledge operates within a team to influence 

performance. While shared knowledge has been 

represented through a variety of measures and methods 

in the past – e.g., task relatedness matrices [34], 

quadratic assignment procedure [35] and schema 

agreement [28] – our approach allows the incorporation 

of any of these measures into a team knowledge network 

that includes all dyads, allowing not only for richer 

analysis and more nuanced explanations of team 

processes and outcomes, but also for aggregation into 

more general measures.  

Without a network perspective, aggregate measures 

provide an incomplete or incorrect picture of a team’s 

knowledge structure, especially for larger teams. Our 

study shows that adding network structure variables to 

predictive models of team performance not only 

provides a more nuanced understanding of how various 

aspects of team knowledge affect different aspects of 

performance, but may also change the direction and 

significance of prior effects. In our model, an ANOVA 

test between the model with only aggregate shared 

familiarity variables and the final model with significant 

variables, showed a significant increase in predictive 

power (F=19.981, p<0.001). 

8. Conclusions 

While these results are preliminary, they underscore 

the importance of incorporating a network analysis 

perspective into research models of team performance. 

Furthermore, our study contributes methodologically by 

providing a way to develop team knowledge networks 

from archival data. Researchers have been studying 

teams, team cognition and social networks for decades. 

While much progress has been made during this time, 

much remains to be learned. The team cognition 

literature is replete with constructs, measures and 

methods to study team knowledge. Some of these 

methods are very sophisticated and effective at 

measuring knowledge constructs. However, most of 

these metrics apply to either dyads or very small teams. 

We argue that we can use any dyadic measure of team 

knowledge and measure it for each dyad in the team and 

compose a knowledge network. In our study we have 

developed shared familiarity networks, which to the best 

of our knowledge, has not been done before.  

Similarly, social network analysis theories and 

methods have been around since the 1930’s and perhaps 

earlier. But these methods and theories have generally 

been applied to behavioral aspects of social interaction 

(e.g., friendship, communication, advice, supervision). 

Network analytics methods have also been applied to 

many more fields, including physics, biology, 

electronics and computing, among many others. It has 

had only limited application to the study of team 

networks, which is distinct from the use of network 

analysis methods to measure team knowledge constructs.  

For example, the “task-relatedness” matrix is a very 

popular method used to measure shared mental models. 

Each member fills in a matrix to rate which task 

components are related to which task components. The 

correlation or closeness of the matrices of two 

individuals is typically analyzed with network analysis 

methods to impute a metric of knowledge structure 

similarity and labeled a “shared mental model”. 

However, this metric is for dyads, not for entire teams. 

We argue that if we do this for every dyad in a team we 

can compose a full team knowledge network. To the best 

of our knowledge, this latter aspect has not been pursued 

in depth in the extant research literature. This perspective 

offers endless possibilities to analyze how teams 

organize their knowledge, tasks and communication to 

work together. Furthermore, many other non-cognitive 

networks can also be developed to measure things like 

geographic dispersion, time zone differences, 

communication volumes and friendship, among many 

others, to build more complete predictive models of team 

performance. Our study is a step in that direction. 

Our study also contributes to practice. It would be a 

straightforward exercise to develop visual network 

diagrams of the shared task and team familiarity 

Page 4198



 8 

networks of software developers in a firm and help 

management form teams with a desired shared 

familiarity structure. Researchers have developed 

similar tools to identify individual familiarity with 

software modules and files, thus helping managers and 

developers locate expertise [26].  

9. Limitations 

Our study may have a number of limitations, with 

three that are important to note. First, the analysis is 

based on archival data, which has inherent limitations. 

For example, this archival data does not have explicit 

data about team process and knowledge. However, we 

have illustrated a novel approach to extract useful data to 

create related proxy measures. For example, prior 

seminal studies of familiarity [22, 23, 52] have relied on 

reductions in task completion times to evaluate task and 

team familiarity. Our approach employs more 

sophisticated methods to test similar outcomes, 

examining shared familiarity in software teams. 

The second major limitation is that team members 

work sometimes with the same peers over time. 

Therefore the OLS assumption of independence may not 

hold up. We have conducted some tests of independence 

with encouraging results and have developed models 

using traditional time series corrections like lagging 

variables. Our results are somewhat similar, but we need 

further analysis to determine this, which we plan to 

undertake in a follow up study. 

Finally, most of the network variables we used are 

based on binary network constructs. For example, degree 

centrality counts a tie when it exists, regardless of the 

value of the tie. So, two members that have worked 

together on just one project will have a tie, just as two 

members who have worked together many times. In our 

follow up study we will integrate tie weights into our 

analysis. We anticipate stronger results once tie weights 

are factored in. 

Despite these limitations, our study makes 

important contributions to team knowledge research, 

including that it: leverages the power of network theories 

and methods; builds upon strengths of current team 

cognition measures; is computationally simple; can be 

used at both, aggregate and detail levels; incorporates 

both, individual and relational knowledge attributes, 

providing a complete picture of the team’s knowledge; 

allows for the computation and visual representation of 

various team’s knowledge measures; and provides a 

richer explanation of the effect of structural aspects of 

team knowledge on team outcomes. Our provides 

evidence that this network perspective adds explanatory 

value. While further development and testing of network 

methods to study team knowledge are still needed, our 

study shows promise to inform research and practice 

how team knowledge can influence performance. 
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