
Managing Tensions between Architectural Debt and Digital Innovation: The
Case of a Financial Organization

Knut H. Rolland
University of Oslo
knutr@ifi.uio.no

Kalle Lyytinen
Case Western Reserve University

kjl13@case.edu

Abstract

In recent years, Information System (IS) scholars

have increasingly explored the malleability and re-
combinability of digital artifacts that facilitate
innovation and change. In this paper, we focus on how
architectural debt thwarts evolvability of complex IT
architectures and systems founded on them. We
conduct a case study in a major Scandinavian financial
institution and explore their how they managed
architectural debt during fast paced service
innovation. Our analysis suggests that the firm’s
capability to innovate depended on software
developer’s ability to work across multiple syntactic,
semantic, and pragmatic knowledge boundaries whilst
addressing architectural debt. The paper offers two
contributions. First, we add to the nascent body of
socio-technical research on technical debt by
illustrating how architectural debt cuts across multiple
developer teams and architecture layers making it hard
to identify and resolve. Second, we expand studies of
digital innovation by identifying two interconnected
tensions faced when innovators have to evolve complex
IT architectures that lay the foundation for artefact
malleability. We tie how the tensions are addressed to
the firm’s capability to manage architectural debt.

1. Introduction

Information System (IS) scholars have for some
time investigated how flexibility and re-combinability
form inherent characteristics of digital technologies
and lay foundation for continuous innovation [1-5].
More often than not, digital innovation involves
embarking on change projects that deploy multiple
interconnected legacy systems. It is well known that
legacy systems are often technically complex and
costly to either extend or discontinue [6]. Moreover,
although improvements in software methods and
technologies such as agile methods [7], cloud based
micro-service architectures (MSA) [8], and
platformization [9], have been available for a while,
software development as a critical foundation of digital
innovation still comes with high levels of risk and
complexity – especially in legacy settings. These

challenges will also reduce the potential for continued
innovation.

One such risk that has remained poorly understood
is the treatment of technical debt and its consequences
for digital innovation. Technical debt broadly refers to
short-cuts, temporary solutions, and architecture
anomalies introduced during software development
that affect long term evolvability of software and
increase its maintenance cost and risk [10-14]. The
connection of technical debt comes with trade-offs. On
the one hand, taking up technical debt speeds up
software development and allows faster launch of
novel innovations [11]. On the other hand, technical
debt reduces the long term ability to maintain and
evolve software with speed and quality [12]. Yet, there
are few IS studies that have empirically assessed and
theorized on the role of technical debt and how it
shapes digital innovation. In particular we know little
how prior architectural decisions to organize software
influence innovation speed and quality. To address this
gap we ask: How does an organization’s capability to
manage architectural debt shape digital innovation?

Extant literature tends to treat technical debt as a
local, micro-level phenomenon confined to the quality
of the code which has negative consequences to
programming effort and quality at team level. In this
paper, we posit that in the context of digital innovation
a broader view is necessary as during innovation
efforts teams need cater also for the effects of
architectural level technical debt across applications.
They need to consequently understand how the
software assets are architected and coordinated at a
higher level. Especially, in the context of digital
innovation we ask how architectural debt becomes
manifested across multiple software modules and
layers within a complex legacy IT architecture. Such
architectures are typical to all large firms running
legacy systems. This kind of technical debt we refer to
as architectural debt since it is not located within a
specific code in a module. Rather it is mainly
manifested in non-functional aspects of a software
system that affect its evolvability, maintainability, and
scalability [15].

Empirically, we draw on a case study within a
major Scandinavian financial organization. This firm
has legacy systems while attempting to innovate with

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 6722
URI: https://hdl.handle.net/10125/71427
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

agility novel mobile services expected to augment its
extensive legacy online services. We show that this
development effort calls for significant management of
architectural debt and the project’s capabilities in
managing such debt has significant consequences for
its ability to deliver services in speed and quality. The
case study indicates that architectural debt will slow
down innovation speed and thwarts business
development. In particular, we show that architectural
debt is initially invisible and incomprehensible for
teams but its level escalates and becomes visible when
the development advances and new debt is added. The
management of architectural debt now depends on
involved actors’ capability to work across multiple
syntactic, semantic and pragmatic ‘knowledge
boundaries’ [16-17] created by modules and
architecture layers. For these actors it is necessary to
detect, resolve, and avoid taking up more architectural
debt. The analysis suggests that while most technical
debt is essentially a technical phenomenon, its sources,
detection, resolution, and uptake are all socio-technical
processes located at multiple levels of the IT and
business functions.

Theoretically, our study contributes to nascent
literature on technical debt and its organizational
consequences. It identifies and describes two tensions
involved in managing architectural debt across
applications. The first one is concerned with the
tension between increasingly decentralized IS
development required by agile teams and these teams’
capabilities to manage architectural debt across
applications. The second tension is concerned with the
need for high speed innovation and the long term
capabilities to manage architectural debt. We also
show how these tensions depend on one another and
mutually contribute to each other. We conclude by
offering advice to practitioners on how to manage
technical debt between applications’ that invite to cut
across complex knowledge boundaries.

2. Relevant literature and theory
2.1 From technical to architectural debt

The concept of “technical debt” has been used by
practitioners and academics alike for some time to
denote sub-optimal technical solutions expressed in
code. The notion originated in software engineering in
the early 1990s and therein referred to coding practices
that introduced short-cuts or poor designs with the
intent to speed up implementation while
simultaneously increasing the life-cycle cost of the
software [11, 15, 18-19]. Ignorant coding and taking
short-cuts were deemed equivalent to taking up
financial debt that had to be repaid with interest later.
Typically, legacy software has considerable technical
debt [20]. One reason is the longevity of software:
“software systems rarely die. Instead, each new version
forms a platform upon which subsequent versions are

built. With this approach, today’s developers bear the
consequences of all design decisions made in the past”
[21: p.170].

In recent years, the research on technical debt has
expanded to encompass multiple aspects of software
development. Alves et al. [19] developed a taxonomy
of technical debt, and identified 15 categories of debt
ranging from code debt to documentation debt.
Although all these types of debt exercise influence on
cost, a specific type of digital debt coined
“architectural debt” should be of special interest for IS
scholars examining interactions between software and
its organizational environment. This debt has the
potential to reduce the evolvability of software artifacts
it refers to “the problems encountered in product
architecture, for example, violation of modularity,
which can affect architectural requirements
(performance, robustness, among others)” [18: p. 106].

Besker et al. [19] link the presence of most
technical debt to prior architecture decisions and
sloppy maintenance effort. With a suboptimal
architecture, complexity and cost of maintenance will
rise and result in growing difficulties during
maintenance. This applies especially to large or very
software systems (over 500KLOC) where architecture
related decisions can have extraordinarily important
consequences. In such systems, the cycle of producing
software can produce excess architectural debt causally
in self-reinforcing manner (poor architectureàpoor
maintenanceàpoor architecture) with drastic
consequences. The origins for the growth of
architectural debt are compromises of modularity, poor
reusability, analyzability, modifiability, testability, and
evolvability of a software system.

Kruchten et al. [15] refer to architectural debt being
as primarily “invisible” and hard to identify. It is not
easily spotted by inspecting locally code (“invisible”),
because it reveals itself in later stages: “when the
system reveals shortcomings or complications in the
maintenance or operation” [19: p. 2]. Moreover,
architectural debt often is symptomatic of
“technological gaps” to be crossed to evolve a software
further [15]. A few empirical studies on architectural
debt and its effects indicate that it reduces development
speed even when using agile methods [12]. Moreover,
mechanisms for resolving such debt (e.g. refactoring)
are rarely prioritized until totally necessary [12]. In
many settings, the accrual of debt triggers a reactive
causal sequence where agile teams seek to speed up
their development and hence plant architectural debt,
which, in turn, reduces speed and further increases the
complexity of software [12].

The picture that emerges from reviewing research
on architectural technical debt is that while early
studies focused on categorizing debt and studying its
consequences for software quality and maintenance,
recent studies focus on how architectural debt makes

Page 6723

software less evolvable and reduces the speed of
product development. Extant literature – including the
literature focused on architectural debt, tends to treat
technical debt as a “local” code level phenomenon
confining to the quality of the code within applications
and having consequences to programmers’ practices,
related team, and project level activities. From the
view point of broader digital innovation within
organizations, it would, however, be important to
identify and theorize how architectural debt becomes
manifested across modules, applications and layers
within a complex IT architecture. Such architectures
are typical to most large firms operating legacy
systems.

Although the topic of architectural debt is weakly
covered on research on digital innovation, its effects on
reduced development speed is highly relevant for
understanding conditions of and barriers to digital
innovation which emphasizes evolvability, short and
fast innovation cycles, and radical shifts in the product
architectures and features [3]. While recent studies
have examined processes of managing technical debt
during platform innovation [10], its importance as an
element of digital business strategy [22], and how it
affects reliability in enterprise platforms [14], there are
no studies that have explored how architectural debt is
managed during and what are its consequences for
digital innovation. Past studies, however, help
contextualize the relevance of technical debt in
managing digital artifacts, their organizational settings,
and how they generate options. Additionally, a recent
study by Rolland et al. [10] outlines a process model of
how technical debt gets planted, evaluated, and
resolved. Planting technical debt refers to how
developers take up new debt. Uptake of technical debt
is not solely a case of incompetence. It can be planted
for unintentional, tactical, or strategic reasons [11].
Therefore, not all technical debt needs to be paid back
[11] and timing of resolving debt is important [10].
This implies that it is of importance when and how to
identify and evaluate debt and understand its
consequences.

The lack of IS research on architectural debt, the
“local”, circumscribed focus on technical debt, and the
void of connecting technical and architectural debt to
socio-technical and often distributed, multi-level
processes of digital innovation suggests significant
gaps in the extant research.

2.2 Managing architectural debt as working

across knowledge boundaries
In order to understand how architectural and

technical debt is planted, evaluated, and resolved
across applications and layers and what are its wider
consequences, we will draw on the concept of
“knowledge boundaries” [16-17]. We draw this lens as
a means to conceptualize how code related knowledge

is “localized, embedded, and invested within a function
and how, when working across functions,
consequences often arise that generate problematic
knowledge boundaries.” [16: p.442]. The perspective is
relevant for understanding architectural debt since such
debt involves identifying and applying knowledge that
is localized, embedded and invested within local
development teams and at the same time manifest
technical interdependencies that need to be identified
and understood across multiple teams, applications and
stakeholders. As such, in complex IT architectures,
knowledge about technical and architectural debt need
to be shared, understood, and negotiated across
multiple teams, units, and disciplines – and sometimes
also across organizations. Especially in situations
where digital innovation relies on knowledge input and
development skills of geographically, functionally,
professionally and/or culturally dispersed actors, the
capability to work across increasingly complex
knowledge boundaries becomes essential. In large
incumbent firms such situations are not exceptional in
that the software development is commonly outsourced
and business and most IT units are organized into self-
confined functions [23]. On top of this, many
organizations have recently established “autonomous”
agile (front line) product focused teams [24] that often
introduce yet another knowledge boundary.

In validating his framework, Carlile [17]
investigated traditional ‘physical’ product
development, he recognized how multiple teams – or
functions in a firm, over time, develop original
knowledge that is locally embedded and situated.
Similar challenges are also noted by Lyytinen et al.
[25] who reviewed the heightened translation
challenges created by highly heterogeneous digital
product development teams. These differences
establish knowledge boundaries because of highly
common practices, frames, and interpretations inside
the boundary. This investment works well for
communicating within teams, but creates problems
when working across teams since other teams or
specialties do not share practices and interpretations
and have not ‘invested’ in the specific type of
knowledge [17].

With regard to architectural debt, this equals a
situation where one development team plants new debt
which is not accounted for, recognized or agreed up on
by other teams – but at the same time may have
consequences for other teams, because of extant
technical interdependencies. Increased novelty, speed
and innovation within teams is moreover likely to
increase the ‘gap’ [17]. Furthermore, Carlile [16,17]
narrates how working across boundaries will involve
communicating across increasingly complex
boundaries at multiple levels (syntactic, semantic, and
pragmatic) where each layer involves more complex
processes of transferring, translating and transforming

Page 6724

knowledge. In the case of syntactic boundaries
information can simply be transferred from one team to
another using common digital tools and standards for
representing the necessary code related information.
Less complex types of technical debt, involving
syntactic knowledge boundaries (call structures for
example) that can be easily be identified and confined,
can be document and shared across teams. Examples of
this can be technical debt which is more or less visual
in cases where a user interface is not updated as new
back-end features become available. In cases of a
semantic knowledge boundary, more complex
processes of interpretation – such as different steps in
perspective making and perspective taking becomes
necessary [26]. Semantic boundaries are likely to cause
architectural debt as misunderstandings across business
units, development teams, and individuals undermine
benefits of modularization and layered architectures.
The particular abstract and complex nature of software
architecture [27], requires in-depth specialist
knowledge about the algorithms, internal details of
structure, and historical background of major design
decisions of the software in order to identify and
evaluate architectural debt. The multitude of APIs and
growing use of micro services in contemporary
software often make it hard navigate and choose
among alternative design choices causing developers to
unintendedly plant architectural debt. Moreover,
although architectural debt is identified and evaluated,
its resolution requires that multiple teams and
individuals coordinate their work and are willing to
prioritize activities to resolve architectural debt.
However, research has indicated that this is seldom
done [12], and that in general, inter-team coordination
in large-scale software development and complex
organizational settings can be difficult [23, 28].
Furthermore, in order to innovate, invest in new
technologies and standards that potentially will diverge
more interests and manifest later latent conflicts. In
such situations, actors must cut across pragmatic
boundaries [16,17] and negotiate. With architectural
debt it has been noted that organizational actors often
have diverging interests when it comes to prioritizing
activities to avoid debt or to resolve existing debt [12,
20]. Typically, business managers prioritize fast
launching of new digital services and features, while an
IT department’s interest would often be in ensuring
security, maintainability, and reliability. Furthermore,
as many organizations outsource their software
development, architectural debt can be introduced by
external partners, because they want to deliver
according to contract or maintain specific applications
within cost. This is not necessarily in the best interest
of organizations wanting to reduce and manage
architectural debt.

3. Method and case description

3.1 Case study method
Because there is a lack of studies emphasizing the

role of architectural technical debt in digital
innovation, we conducted exploratory case study to
develop emergent theory [29, 30]. We sampled the
case of BankAlpha as we wanted to study this
phenomenon in the context of an incumbent
organization with a complex IT architecture involving
numerous legacy IS as a representative case. Data
collection started in spring 2019 with a focus on how
IT architects were organized, their practices, and
especially how they worked with technical and
architectural debt. We drew on multiple sources of
evidence including meetings, interviews, and
documents. In early stages, four meetings with
principal architects were conducted to get an overview
of the complex IT architecture, legacy IS, and
integration technologies utilized in BankAlpha. A
meeting where an overview of the organization,
business units, and core services was also conducted.
In addition, we had a meeting with the IT director
where different options for re-organizing the IT
function was discussed. The meetings were extensively
documented. During autumn 2019 and spring 2020 11
in-depth interviews were conducted using a common
interview instrument including questions on the
following main topics: 1. What project(s) did you work
on? 2. How did your project(s) manage technical debt?
3. How did you identify architectural debt, how did
you deal with it, and what where the consequences
over time? 4. How did decentralizing IT affect
management of technical debt? 5. How did transition
towards use of agile methods affect management of
technical debt? 8 interviews were recorded and all
interviews were extensively documented. Informants
included Business managers (3), IT architects (3),
Enterprise architects (2), and Software developers (3).
Interviews were also supplemented after interviews
with informal discussions and email exchanges to shed
light on specific issues and double-check information.
Documents such as available PowerPoint presentations
on IT architecture, agile organizing of software
development, and organizational charts were also
consulted.

Data analysis was done in three steps. First, we
coded all interview data using a combination of pre-
defined codes from theory; knowledge boundaries,
boundary capabilities [16, 17] and notions of planting,
identifying, evaluating, and resolving debt [10].
Thirdly, using the narrative approach [31], we
identified three narratives describing how software
development teams struggled in “managing”
architectural debt in practical day-to-day situations; 1)
how architectural debt was plated across teams, 2) how
unknown architectural debt in legacy IS influenced
software development, and 3) how architectural debt
was unintendedly planted.

Page 6725

3.2 Case context of the mobile bank project in
BankAlpha

BankAlpha is a large Scandinavian bank with
several hundred years of history as a reliable and
important economic and financial institution. In recent
years, BankAlpha has been faced with increased
competition from Fintech companies and international
digital payment platforms. As a response, to improve
their digital innovation capabilities, the bank re-
organized its IT-function in 2019 from being relatively
centralized to more decentralized and to integrate
software development with its business units.
BankAlpha has also invested heavily in software
development to digitally transform itself. In 2018
BankAlpha adopted an agile software development
method based on the Spotify model [7]. With this
approach, developers and business representatives are
organized in “autonomous teams” where they are
responsible for not only developing the software but
also for evolving and maintaining it. In terms of
technology, BankAlpha embraced microservice-
oriented architectures, extensive use of layering and
APIs, and is currently developing its applications on
the AWS cloud.

In spite of these efforts, BankAlpha was struggling
with increasing uptake of technical debt related to its
complex IT architecture and reliance on numerous
legacy IS. An essential backbone of its digital
infrastructure remains several legacy core banking
systems running on mainframe computers with
software written in COBOL. As a result of numerous
acquisitions and mergers, the firm was endowed with
multiple “archeological” layers of legacy IS often with
overlapping functionality – as for example there were
multiple core systems in use for handling credit cards.
In this way, architectural debt has accrued abundantly
over the years. A bulk of maintaining these legacy
systems has been for some time outsourced and
offshored to Indian consulting companies. This
situation also made technical and architectural debt
somewhat “invisible” for internal business and IT
managers, as noted by the central IT architect: “We are
aware of technical debt, but in practice we do not have
detailed insight in uptake of technical debt in
applications”. Lately, however, this situation has been
changing as BankAlpha has made decisions to insource
most software development and maintenance of its
strategic and core banking applications.

With this backdrop, in 2017, BankAlpha kicked off
an ambitious project involving over 100 software
developers and designers to develop new banking
services on Smartphones. The goal was to launch a
mobile bank APP running on the AWS cloud platform.
This is a serverless and flexible IT architecture with
layering and APIs, and thereby its goal is to
discontinue the current online banking platform.

However, the project was severely hit by an increased
uptake of technical debt. Especially, the project ran
into high amounts of historically planted architectural
debt which was intrinsic to the many legacy IS in use.
This reduced the speed of innovation and increased the
complexity of the current IT architecture. However, in
a couple of years after the initial start, the project
finally succeeded to launch a new mobile banking app
on Android and iOS platforms, and is currently
evolving these applications further.

4. Results and analysis

We next scrutinize three distinct narratives and
analyze how actors had to work across knowledge
boundaries while identifying, evaluating, and resolving
architectural debt.
4.1 Planting architectural debt across distributed

teams
 Initially, the mobile bank project (hereafter referred
to as the project) started off in 2017 following the old
waterfall approach with toll gates. The project started
with developing architectural foundations and
conceptual ideas developing native mobile apps in
AWS cloud and APIs accessing a ‘shared service
layer’. The ‘shared service layer’ was also developed
in parallel in order to serve as a common middleware
layer with APIs for accessing core bank systems for all
cloud-based applications. The project was organized in
a distributed fashion with developers located on one
site in Scandinavia and one in India, and UX designers,
project and business managers at a third location in
Scandinavia. However, the project turned out to have a
too large scope and the distributed organizing of the
project made coordination across challenging. This led
to planting of technical and architectural debt where
one a team’s choices at one location was unaware of
the technical interdependencies and consequences for
teams located elsewhere. In 2018 the project was re-
organized into agile teams with more in-house
developers. After a while the teams became aware of
the technical and architectural debt. In particular, there
was considerable architectural debt in the way that the
initial APIs were designed leading to considerable
work to re-design and re-implement software
components relying on these APIs: “We could continue
to work with some of the ideas behind the current
architecture, but we had to re-implement almost
everything. The entire iPhone APP had to be re-
implemented and more importantly, many APIs.”
(Business manager). Early in the project it was quickly
decided to use the Go programming language for back-
end programming. Later this choice turned out to have
insufficient and undocumented features, and over time
became architectural debt that slowed down the
project. As the project proceeded in more co-located
agile teams, the uptake of technical and architectural
debt was seen as necessary to meet deadlines and

Page 6726

business unites’ expectations as explained by one
developer: “Much of architectural technical debt was
consciously planted. We knew that this had to be done
because of pressure to meet deadlines” (in-house
developer).
Analysis:

In the first phase the project suffered from lack of
coordination and knowledge sharing across a very
distributed development organization that unintendedly
planted architectural debt that eventually significantly
slowed down the overall innovation process.
Uncoordinated choices regarding architecture, like
development of APIs and selection of development
platform that was done by different teams somewhat
unintendedly planted architectural debt.

Drawing on Carlile’s lens [16,17], effective
coordination and sharing across knowledge boundaries
requires processes of translating programming and
architecture knowledge across the various locally
distributed teams. This can be challenging as it not
only requires competent developers understanding the
syntax and structure of legacy programming code, but
additionally that they can cognitively and socially
translate its deeper implications, limitations, and
meaning [25]. Working in a mostly as co-located teams
later in the project, however, the local planting of
architectural debt was more easily identifiable and
transferrable across less complex knowledge
boundaries – such as other co-located teams or within
teams. At this point the developers were very well
aware of the existing architectural debt as this was
partly documented in Jira and in comments in the code.
For example, they were aware of “local” architectural
debt related to using a specific coding library for GUI
on Android phones.

Architectural debt planted during the first phase of
the project was not identified until years after re-
organizing the project. Architectural debt was in this
way different from technical debt in that it inherently is
discoverable only long after it is planted. As such, it
typically only becomes “visible” when trying to
integrate various modules and to evolve the software
further with more extensive or novel features [15]. This
can make architectures path dependent, since at the
point of discovery, resolution of contingently planted
architectural debt may be considered too costly and
risky. With regard to the Go programming platform in
the project this was the case. The project just had to
live with the initial decision although the involved
actors realized it was a rather sub-optimal technology
platform.

Our analysis indicates that architectural debt
requires working across more complex knowledge
boundaries as its causes and effects are stretched out in
time complicating processes of sense making and sense
giving. Also, although the Project involved local
technical debt, architectural debt was considered far

more critical due to the need for crossing knowledge
boundaries: “Architectural debt is the most demanding
form of debt as it has broader consequences and can
not only be resolved through prioritizing an activity in
the release backlog of one application” (Chief
Architect)

4.2 Unknown architectural debt in legacy IS and

outsourced IT
Like many financial institutions with a long history,
BankAlpha also had extensive architectural debt
related to their legacy IS. Architectural debt in legacy
IS is often not documented and those developers who
planted it are typically long gone. Generally, the
developers and business mangers were all very well
aware of that it existed, but not exactly what it was and
what consequences it could have for new software
development projects. Thus, as one developer
explained just identifying technical and architectural
debt is very difficult and sometimes near impossible:
“It is very hard to identify architectural debt during
development and testing. It first comes to surface
during production” (Developer #3).

 On the contrary, with a modularized and layered
architecture, the expectation from most business
managers was that building a mobile bank on top of
existing layered IT architecture would be relatively
straight forward. In contrast, the project members soon
realized that this was not the case: “Although AWS
cloud is almost unlimitedly scalable, our solutions are
not – since they all depend on legacy systems”
(Developer #1).

 A particular expounding consequence of largely
unknown or hidden architectural debt in legacy IS, was
typically stumbled up on when the project wanted to
add new features to the mobile APP that had slight
differences compared to existing ones. At one occasion
the team wanted to add a feature to deactivate credit
and other bank cards. Deactivation of a card is often
needed by customers when they think that they have
lost their card. However, in most cases, they find their
lost card and hence immediately want to activate it
again. Previously when customers had lost their card,
they had to call the bank and the bank manually
deactivated the card and then a new card was produced
and issued to the customer. However, implement this
new feature surprisingly turned out to be extremely
time consuming. It involved juridical expertise, re-
design of internal work processes, and resolution of
architectural debt in several legacy IS – typically
offshored to India. In general, outsourcing of IT was
especially problematic as it made such debt hidden:
“Until 2019 we outsourced much of our infrastructure,
IT-operations, and application development which
sometimes hides technical debt for us, because
continuous management and maintenance are left to
the suppliers.” (Chief Architect)

Page 6727

This type of challenges had huge consequences for
prioritizing of features in the project, as explained by a
manager: “We think a lot about what we can do on our
own without involving modifications in legacy IS. For
example, if I want to have an overview of historical
interest [in the mobile APP] – to develop the API will
take nine to twelve months. Consequently, we need to
prioritize differently…”
Analysis:

Legacy IS has long been a profound challenge in
incumbent firms like BankAlpha. The above narrative,
illustrates that although modularized architectures,
Cloud solutions, and APIs make it possible to build
new APPs on top of legacy IS, it is still problematic
due to historical uptake of architectural debt. Drawing
on the concept of knowledge boundaries [16,17], we
see that managing architectural debt relies on the
actors’ boundary capabilities as the detailed knowledge
about this debt is decentralized across different teams
and communities. Hence, the lack of such boundary
capabilities to work across semantic and pragmatic
boundaries render architectural debt invisible to
application developers.

 In particular, there was a huge “gap” between
those who developed new applications and the largely
outsourced teams involved in maintenance of legacy IS
in terms semantic as well as pragmatic boundaries.
First, the semantic boundaries involved the problems in
translating the needs of the APP developers to the
teams maintaining legacy IS. Changes that APP
developers thought of as simple and easily done, took
months since they did not understand the complexity of
resolving the architectural debt involved. Second, there
was also a pragmatic boundary involved since offshore
development was contract-based it was not necessarily
the IT suppliers’ best interest to resolve debt.
Moreover, the IT function of the bank also tended to
prioritize stability, reliability and security as their
number one priority, making rapid and substantial
modifications in legacy IS unwanted.

4.3 Unintentionally planting new technical and

architectural debt
As mentioned, the project did not only develop a

new online bank on Android and iOS, there was also a
team working on the ‘shared service layer’. This was
part of the new strategy to develop a common API not
only the mobile APPs, but for all new applications
developed in the Cloud. In turn, the shared service
layer uses the APIs running on another layer of
middleware which gives uniform access to the actual
core banking systems. This layered architecture makes
it relatively easy to build new apps that integrate with
legacy IS in a secure way. However, as there are
different distributed teams working on the different
layers and modules, this also tend to hide complexity.
As one of the main architects stated: “It takes time to

fully understand all the interdependencies. We
reorganized the IT-function not just because it reduces
complexity in itself, but because it gives ownership and
the continuity required for proper understanding of
how systems are implemented and why, and thereby
supporting better long-term architectural decisions.”

Hence, the layered modularized architecture also
hides important details of how these different core
systems actually work, and sometimes make it hard for
application developers what APIs to use and why. The
agile teams which had a strong focus to speed-up
development of new features and were also pushed by
impatient business managers, and hence developers
tended to unintentionally plant new architectural debt
since they did not have enough knowledge about what
was beyond the next layer in the architecture: “When
you work with front-end issues it is very difficult to
discover bugs and how things work downwards in the
architecture. Not until you discover what happens in
production…” (Developer #2). Furthermore, as much
software development historically had been outsourced
and offshored, some of the code appeared as chaotic
and nearly incomprehensible lacking any comments in
the code. To get around this situation, developers had
to “bet on” and just try out which APIs to use: “Instead
of analyzing and fully understanding the complexity,
we tended to use simpler and more generic APIs”
(Developer #3). In this way, existing architectural debt
concerned with the interfaces and organization of APIs
across modules and layers, makes it likely that
individual developers introduce bugs and plant new
technical and architectural debt. IS development at
BankAlpha also needed to take specific compliance
rules and regulations issued by the Governmental
authorities into account. Whilst employees on the
business side are knowledgeable about such
compliance issues, this is not necessarily the case for
software developers and UX experts. This situation,
occasionally caused development of new software that
turned out not to comply such rules and regulations,
and hence planting substantial amounts of technical
and architectural debt.
Analysis:

The layered architecture at BankAlpha offered a lot
of initial advantages. In combination with
decentralized and distributed organizing of
development, and a competitive context with extensive
pressure to deploy new features, however, it can cause
unintended uptake of architectural debt. Efficient
management of architectural debt at BankAlpha
seemed to imply working across multiple semantic and
pragmatic boundaries, as expressed by a developer:
“We need to learn to communicate better with the
people working on the shared service layer, and they
need to communicate with people maintaining the core
banking systems… and they often sit in India.”. Hence,
there is multiple processes of translation needed in

Page 6728

order to bridge the semantic and pragmatic boundaries
invested by the different teams. Failure to do this, as
the narrative above illustrates, are likely to cause
unintended planting of new technical and architectural
debt. This, will over time, in turn cause more
complicated code and software architecture making it
even more difficult to cross knowledge boundaries
across teams working on different levels in the
complex architecture.

5. Discussion

Our objective has been to empirically explore the
dynamics of managing architectural debt in complex IT
architectures and to theorize how such debt affects
digital innovation. In so doing, we have drawn upon
the concepts of knowledge boundaries and boundary
capabilities [16,17]. We found this lens fruitful in that
although architectural debt by itself is highly technical
issue, the task of identifying, evaluating, and resolving
– in short managing successfully such debt, is socio-
technical in the sense that managing architectural debt
requires team level capabilities to work across
semantic and pragmatic knowledge boundaries.
Although project teams can successfully manage most
local technical debt internally, they cannot similarly
manage architectural debt that cuts across multiple
knowledge boundaries. These insights add to existing
studies of architectural debt [12,15,19] and explain
why architectural debt is different and more
challenging than technical debt confined within
singular loosely coupled software modules. As such,
our study shows that void of such capabilities,
manifested in varied boundary spanning practices and
objects and related cognitive and social capabilities
that translate and transform knowledge across
boundaries, will increase the likelihood of planting
new architectural debt. Moreover, poor abilities to
identify architectural debt will later escalate a string of
surprises and increasingly complex problems while
developing new modules and applications. This, in
turn, will have broader consequences for the
organization’s capability to innovate under the
auspices of its current IT architecture.

Grounded in the case study of BankAlpha, we posit
that architectural debt influences innovation speed and
quality and shapes the evolution of complex IT
architectures in multiple ways. In particular, we
identify two tensions that partially account for the
dynamics of organizational capabilities necessary to
manage architectural debt during digital innovation.

First, we note a tension between decentralized IT
governance and IS development, and the capability to
manage architectural debt. IS scholars have for long
argued that decentralized IT governance promotes
local flexibility, innovation, and an ability to quickly
respond to changes [32, 33]. However, decentralized
IT governance involving complex IT architectures will

introduce higher and larger number of knowledge
boundaries which require new boundary crossing
capabilities to identify, evaluate, and resolve
architectural debt. As shown in the case, decentralizing
IS development using agile teams does not by itself
improve the capability to manage architectural debt,
though it improves the ability to manage internally
technical debt within each module. Consequently,
while it makes sense to decentralize software
development so that new solutions can be co-
constructed by IT developers and business experts
using cross-disciplinary teams that boost innovation
[35], such configuration can reduce the organization’s
capability to take and manage architectural debt.

We note also a tension between desire for higher
speed with agile development and the long term
capability to manage architectural debt. For some time
speed has been an important facet of digital innovation
[36] and strategizing [3,37]. This come from the
necessity to speed up learning as to improve strategic
decision making, accelerating new product
development, and the sense and response cycle [37].
However, the focus on speed can conflict with the need
to manage architectural debt. In general, long term
continuity can be more important than immediate
speed in software development when software is
viewed as an asset [35]. As seen in the case, high-
speed development can undermine prioritizing of
resolving architectural debt, increase the amount of
unobserved planting of architectural debt, and lead to
taking up more architectural debt than the organization
can handle. Highly productive agile teams enjoy a high
degree of autonomy and are typically relatively small.
This however, generates a pressing need for
coordination across teams and projects [23] involving
creation of boundary spanning capabilities to
effectively translate knowledge necessary to identify
and resolve architectural debt. Typically, it also makes
it more difficult to identify accrued architectural debt
in other modules and layers. Generally, organizations
endowed with relatively high degree of modular and
layered architectures founded on APIs and
microservices are better positioned to support
continuous innovation. However, as shown in the case
study, decentralized autonomy in IS development and
high-speed agile development lead to favor business
managers immediate needs for prioritizing new
features rather than spending effort to identify and
resolve architectural debt. Hence, paradoxically, a too
strong focus on speed, will actually slow down the
speed, because cumulated architectural debt needs to
be resolved at some point in order to add new product
features. A critical mechanism for learning and
innovation in agile development – to fast and
frequently release new features, can actually
undermine the long term capability to manage
architectural debt.

Page 6729

Interestingly, per previous research on IT
governance [32, 33], digital innovation [1,2], and agile
development [7, 23], our results appear paradoxical in
the sense that mechanisms that normally would
produce flexibility, innovation, and change also will
undermine these changes because of the amplifying
effects of accruing architectural debt. The nature of
the two tensions should be understood as a duality
rather than a dualism [34]. Per Farjoun [34], duality
similar to dualism describes the relationships between
two entities. However, if the relationship is a duality,
then the two entities are always interdependent, and at
the same time both polarizing and complementary.
This distinction conceptualizes stability and change as
mutually enabling rather than mutually exclusive [34].
Likewise, we postulate that decentralization of IT and
capability to manage architectural debt is a
manifestation of duality: there is a need for effectively
manage architectural debt in order to decentralize IT
governance and create flexibility in IS development,
and vice versa. There is always a need for a degree of
decentralization in order to manage architectural debt.
In this way, decentralized IT governance and
capabilities to manage architectural debt are
complementary. However, a too strong focus on either
polarizing end will result in a contradictory scenario
creating a vicious circle where absence of boundary
capabilities builds more architectural debt, which, in
turn, renders the IT architecture increasingly complex.

Likewise, the tension between high-speed agile
development and the capability to manage architectural
debt need to be understood as a duality. Effective
management of architectural debt increases the speed
of development, and higher speed of development –
under certain conditions- imply faster and earlier
identification of architectural debt. In contrast, a lack
of balance triggers an escalating tension that
undermines the organization’s capability to digitally
innovate with agility and produce value.

Per the case study we posit that a contradictory
scenario (dualism) is triggered, in particular, in
contexts with complex IT architectures that involve
legacy IS, compliance issues, and a highly competitive
environment. Compliance issues require IT developers
and managers to constantly check for compliance and
consult legal experts to ensure that new applications
are compliant. This, however, introduces new
knowledge boundaries, and in particular pragmatic
boundaries where compliance experts, IT developers
and business managers tend to have diverging interests.
Historical uptake and unknown architectural debt are
likely to hinder IT developers and managers to quickly
launch new and compliant solutions. At the same time,
in highly competitive markets, there is a constant
pressure to innovate and launch new products and
services. In such environments, attempts at high-speed
development are likely to backfire in terms of

uncontrolled uptake of unreasonable and expensive
architectural debt. No wonder that financial services,
airlines or cars do not operate like Google or Facebook
which so far have faced nearly unregulated
environment.
6. Concluding remarks

To this date, IS scholars studying digital innovation
have shown less interest in technical conditions
conducive of digital innovation such as the effects of
technical and architectural debt. This is unfortunate,
because the void circumscribes the explanatory power
of current research. From the outset, digital artifacts
provide nearly unlimited possibilities for organizations
to innovate through continuous recombination and
reprogramming of digital components [2]. In practice,
however, technical and architectural debt provide
stringent limitations for designers while innovating
new products and services. Theoretically, our research
suggests that these limitations play out as tensions
between the mechanisms promoting innovation, and
mechanisms necessary to manage architectural debt.
The more an organization attempts to innovate through
high-speed development and decentralizing IT
development and governance, the more challenging it
becomes to manage architectural debt. Over time, these
tensions interact and increase the unobserved planting
of architectural debt. Failing to identify debt can also
escalate this debt in a self-reinforcing manner. This
non-linear buildup of architectural debt will – if not
rectified, in turn, produce technical implementation
failures and result in skyrocketing innovation cost. The
practical implications of our insights are manifold.
First, there is a need for IT developers and architects to
not only be aware of other teams and projects, but also
to establish coordination mechanisms with the explicit
purpose of translating and negotiating insights and
recommendations regarding architectural debt. This
can, for instance, be implemented through architectural
(debt) boards. Second, there is a need for organizations
like BankAlpha to take more control of maintenance of
legacy IS to build deeper competence on the buildup of
architectural debt in their systems. This can be done
through insourcing and backsourcing of core IT
platforms. Lastly, high-speed agile development needs
to be balanced with stabilizing activities like clear
criteria for refactoring and enhancing planning-
oriented practices to identify and analyze sources of
architectural debt.
7. References
[1] Henfridsson, O., & Bygstad, B. (2013). The generative

mechanisms of digital infrastructure evolution. MIS
quarterly, 907-931.

[2] Henfridsson, O., Nandhakumar, J., Scarbrough, H., &
Panourgias, N. (2018). Recombination in the open-
ended value landscape of digital innovation. Information
and Organization, 28(2), 89-100.

[3] Nambisan, S., Lyytinen, K., Majchrzak, A., & Song, M.
(2017). Digital Innovation Management: Reinventing

Page 6730

innovation management research in a digital world. Mis
Quarterly, 41(1).

[4] Svahn, F., Mathiassen, L., & Lindgren, R. (2017).
Embracing Digital Innovation in Incumbent Firms: How
Volvo Cars Managed Competing Concerns. Mis
Quarterly, 41(1).

[5] Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010).
Research commentary—the new organizing logic of
digital innovation: an agenda for information systems
research. Information systems research, 21(4), 724-735.

[6] Mehrizi, M. H. R., Modol, J. R., & Nezhad, M. Z.
(2019). Intensifying to cease: Unpacking the process of
information systems discontinuance. MIS
Quarterly, 43(1), 141-166.

[7] Dingsøyr, T., Falessi, D., & Power, K. (2019). Agile
development at scale: the next frontier. IEEE
Software, 36(2), 30-38.

[8] Bozan K., Lyytinen K., Rose G. (2020): Transitioning
Incrementally to Microservice Architecture (MSA): A
Field Study, Communications of the ACM, forthcoming

[9] Vestues, Kathrine and Knut H., Rolland, "Making Digital
Infrastructures More Generative Through
Platformization and Platform- driven Software
Development: An Explorative Case Study" (2019). 10th
Scandinavian Conference on Information Systems. 4.
https://aisel.aisnet.org/scis2019/4

[10] Rolland, K. H., Mathiassen, L., & Rai, A. (2018).
Managing digital platforms in user organizations: the
interactions between digital options and digital
debt. Information Systems Research, 29(2), 419-443.

[11] Tom, E., Aurum, A., & Vidgen, R. (2013). An
exploration of technical debt. Journal of Systems and
Software, 86(6), 1498-1516.

[12] Martini, A., Bosch, J., & Chaudron, M. (2015).
Investigating Architectural Technical Debt accumulation
and refactoring over time: A multiple-case
study. Information and Software Technology, 67, 237-
253.

[14] Ramasubbu, N., & Kemerer, C. F. (2016). Technical
debt and the reliability of enterprise software systems: A
competing risks analysis. Management Science, 62(5),
1487-1510.

[15] Kruchten, P., Nord, R. L., & Ozkaya, I. (2012).
Technical debt: From metaphor to theory and
practice. IEEE software, 29(6), 18-21.

[16] Carlile, P. R. (2002). A pragmatic view of knowledge
and boundaries: Boundary objects in new product
development. Organization science, 13(4), 442-455.

[17] Carlile, P. R. (2004). Transferring, translating, and
transforming: An integrative framework for managing
knowledge across boundaries. Organization
science, 15(5), 555-568.

[18] Alves, N. S., Mendes, T. S., de Mendonça, M. G.,
Spínola, R. O., Shull, F., & Seaman, C. (2016).
Identification and management of technical debt: A
systematic mapping study. Information and Software
Technology, 70, 100-121.

[19] Besker, T., Martini, A., & Bosch, J. (2018). Managing
architectural technical debt: A unified model and
systematic literature review. Journal of Systems and
Software, 135, 1-16.

[20] Holvitie, J., Licorish, S. A., Spínola, R. O., Hyrynsalmi,
S., MacDonell, S. G., Mendes, T. S., ... & Leppänen, V.

(2018). Technical debt and agile software development
practices and processes: An industry practitioner
survey. Information and Software Technology, 96, 141-
160.

[21] MacCormack, A., & Sturtevant, D. J. (2016). Technical
debt and system architecture: The impact of coupling on
defect-related activity. Journal of Systems and
Software, 120, 170-182.

[22] Woodard, C. J., Ramasubbu, N., Tschang, F. T., &
Sambamurthy, V. (2013). Design capital and design
moves: The logic of digital business strategy. Mis
Quarterly, 537-564.

[23] Rolland, K., Dingsoyr, T., Fitzgerald, B., & Stol, K. J.
(2016). Problematizing agile in the large: alternative
assumptions for large-scale agile development. In 39th
International Conference on Information Systems (pp. 1-
21). Association for Information Systems (AIS).

[24] Dybå, T., Dingsøyr, T., & Moe, N. B. (2014). Agile
project management. In Software project management in
a changing world (pp. 277-300). Springer, Berlin,
Heidelberg.

[25] Lyytinen K., Yoo Y., Boland R. (2016) “Digital Product
Innovation within Four Classes of Innovation
Networks”, Information System Journal, 26,1, pp. 47–75

[26] Boland Jr, R. J., & Tenkasi, R. V. (1995). Perspective
making and perspective taking in communities of
knowing. Organization science, 6(4), 350-372.

[27] Baragry, J., & Reed, K. (1998, December). Why is it so
hard to define software architecture? In Proceedings
1998 Asia Pacific Software Engineering Conference
(Cat. No. 98EX240) (pp. 28-36). IEEE.

[28] Bick, S., Spohrer, K., Hoda, R., Scheerer, A., & Heinzl,
A. (2017). Coordination challenges in large-scale
software development: a case study of planning
misalignment in hybrid settings. IEEE Transactions on
Software Engineering, 44(10), 932-950.

[29] Gerring, J. (2007). Case study research: Principles and
practices. Cambridge University Press

[30] Eisenhardt, K. M. (1989). Building theories from case
study research. Academy of management review, 14(4),
532-550.

[31] Langley, A. (1999). Strategies for theorizing from
process data. Academy of Management review, 24(4),
691-710.

[32] Gregory, R. W., Kaganer, E., Henfridsson, O., & Ruch,
T. J. (2018). IT Consumerization and the Transformation
of IT Governance. Mis Quarterly, 42(4), 1225-1253.

[33] George, J. F., and King, J. L. 1991. “Examining the
Computing and Centralization Debate,”
Communications of the ACM (34:7), pp.62-72.

[34] Farjoun, M. (2010). Beyond dualism: Stability and
change as a duality. Academy of management
review, 35(2), 202-225.

[35] Fitzgerald, B., & Stol, K. J. (2017). Continuous software
engineering: A roadmap and agenda. Journal of Systems
and Software, 123, 176-189.

[36] Kessler, E. H., & Chakrabarti, A. K. (1996). Innovation
speed: A conceptual model of context, antecedents, and
outcomes. Academy of Management Review, 21(4),
1143-1191.

[37] Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., &
Venkatraman, N. (2013). Digital business strategy:
toward a next generation of insights. MIS quarterly, 471

Page 6731

Page 6732

