
1

Estimating Software Vulnerability Counts
in the Context of Cyber Risk Assessments

Thomas Llansó, thomas.llanso@jhuapl.edu, thllanso@dsu.edu
Martha McNeil, martha.mcneil@jhuapl.edu , martha.mcneil@dsu.edu

Johns Hopkins University Applied Physics Laboratory
Dakota State University

Abstract—Stakeholders often conduct cyber risk assessments
as a first step towards understanding and managing their risks
due to cyber use. Many risk assessment methods in use today
include some form of vulnerability analysis. Building on prior
research and combining data from several sources, this paper
develops and applies a metric to estimate the proportion of
latent vulnerabilities to total vulnerabilities in a software system
and applies the metric to five scenarios involving software on
the scale of operating systems. The findings suggest caution
in interpreting the results of cyber risk methodologies that
depend on enumerating known software vulnerabilities because
the number of unknown vulnerabilities in large-scale software
tends to exceed known vulnerabilities.

Index Terms—cyber, risk, vulnerability, estimation, flaw rate,
discovery rate

I. INTRODUCTION

Organizations that employ cyber systems to help meet
business/mission objectives are often concerned about the
degree to which cyber attacks can put those objectives at
risk. The motivation for the concern is clear. By nearly any
measure, the magnitude of the problem is staggering. As an
illustration, Cybersecurity Ventures estimates that cyber crime
will cost the world $6 trillion annually by 2021 and that $1
trillion will be spent globally on cybersecurity between 2017
and 2021 [1].

Stakeholders often conduct risk assessments as a first
step towards understanding and managing mission risks due
to cyber effects, such as cyber attacks. To one degree or
another, risk assessment methodologies focus on enumerating
cyber-related vulnerabilities as a means to assess cyber risk.
NIST defines vulnerability as a weakness in an information
system, system security procedures, internal controls, or
implementation that could be exploited by a threat source [2].

Vulnerabilities can be found in people, processes, and
technologies. This paper focuses on vulnerabilities in
technology, specifically software on the scale of operating
systems (OSs). With major OSs now exceeding 50 million
lines of code [3], the issue of vulnerabilities in software
remains a key concern, despite raised awareness. As the
Hewlett Packard 2015 Cyber Risk Report [4] states:

Much has been written to guide software developers
on how to integrate secure coding best practices

into their daily development work. Despite all of this
knowledge, we continue to see old and new vulner-
abilities in software that attackers swiftly exploit.

Software vulnerabilities manifest in many forms, including
race conditions, buffer overflows, integer overflows, dangling
pointers, poor input validation (e.g., SQL injection, cross-site
scripting), information leakage, violation of least privilege and
other access control errors, use of weak random numbers in
cryptography, protocol errors, and insufficient authentication
[5][6]. As cataloged in the National Vulnerability Database [7],
prominent recent examples of serious software vulnerabilities
include Heartbleed (Common Vulnerabilities and Exposures
(CVE) ID CVE-2014-016), Shellshock (CVE-2014-6271),
the glibc buffer overflow (CVE-2015-7547), VENOM
(CVE-2015-3456), and Microsoft Malware Protection Engine
vulnerability (CVE-2017-0290) [7]. According to the website
CVE Details [8], there have been 937 vulnerabilities between
January and August 2017 to date. Ten percent of those
vulnerabilities were in the “critical” (highest severity)
category with assigned Common Vulnerability Scoring
System (CVSS) scores of 9 or 10 [9].

This paper considers the following question: Given that
risk assessment methodologies in use today depend in large
part on an understanding of vulnerabilities, and software
vulnerabilities in particular, to what degree can we hope to
be complete in an enumeration of software vulnerabilities in
a target cyber environment?

Our hypothesis is that currently the community can only
enumerate a minority of software vulnerabilities present in
large software systems. To explore the hypothesis, we develop
a metric that estimates the proportion of vulnerabilities that
are latent or unknown at any given time in a software system,
which we can then use as a means to test our hypothesis. By
unknown, we mean unknown to the creators of the software
system. Note that we do not require great precision in our
metric, as we only seek to establish that unknown software
vulnerabilities tend to exceed known vulnerabilities within
OS-scale software systems.

The rest of this paper discusses related work, the estimation
approach, and an analysis of the approach in the context of
operating systems. Conclusions and future work follow.

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50576
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5514

2

II. RELATED WORK

There are many published cyber risk assessment
methodologies in use today, e.g.:

• United States National Institute of Standards and Tech-
nology (NIST) Special Publication 800-30: Guide for
Conducting Risk Assessments [2],

• Carnegie Mellon Software Engineering Institute Opera-
tionally Critical Threat, Asset, and Vulnerability Evalua-
tion (OCTAVE) [10],

• MITRE Threat Assessment and Remediation Analysis
Methodology (TARA) [11],

• ISACA Control Objectives for Information and Related
Technologies (COBIT) [12],

• Johns Hopkins Applied Physics Laboratory Mission In-
formation Risk Analysis (MIRA) [13],

• Air Force Research Laboratory Cyber Risk Assessment
in Distributed Information Systems [14].

As an example methodology, the NIST guide presents an
approach to risk assessment summarized in Figure 1. As the
figure shows, the process involves four major steps. The actual
assessment occurs in step two, which has several substeps.
The second substep pertains to identifying vulnerabilities and
predisposing conditions.

Fig. 1: NIST 800-30 Process Summary

Another example methodology, OCTAVE, contains phases
and steps within phases that pertain to vulnerabilities of
different types in Table I. In OCTAVE, vulnerabilities are
addressed in phase two, step two.

The study of cyber-related vulnerability prediction is rich
and varied. A sampling of prior research related to the topic
of this paper follows.

McQueen, et al. [15] estimate the number of zero day
vulnerabilities in software. The authors’ definition of zero day

Phase Output

One
Critical Assets
Security Requirement for Critical Assets
Threats to Critical Assets
Current Security Practices

Two
Key Components
Current Technology Vulnerabilities

Three
Risks to Critical Assets
Risk Measures
Protection Strategy
Risk Mitigation Plans

TABLE I: OCTAVE Outputs

requires that the vulnerability has already been discovered
by some agent but is not yet publicly disclosed. This
approach estimates the number of vulnerabilities disclosed
to a vendor but not yet made public on any given day as
well as the average lifespan of a zero day vulnerability.
Jones [16] estimates a related metric, namely the number
of vulnerabilities made public but for which no vendor
patch is yet available. This paper also estimates unknown
vulnerabilities but without constraints related to vendor
notification.

A number of researchers considered vulnerability discovery
modeling. Zhang, Caragea, and Ou [17] make use of data
from the National Vulnerability Database (NVD) maintained
by NIST [7] applying a data mining approach to try to create
a prediction model for time to next vulnerability for several
commercial software products.

Vulnerability discovery models, time-based or effort-
based, have been researched as a means to predict latent
vulnerabilities. Alhazmi and Malaiya [18] quantitatively
compare six time-based models of the vulnerability discovery
process observing that if vulnerability density can be
estimated for a software product from historical data, an
estimate of the total number of vulnerabilities, including
those not yet discovered, can be computed. Woo, et al. [19]
also studied vulnerability discovery models, applying one
time-based model and one effort-based model to the Apache
and IIS webservers using historical data from 1995 to 2009.
Both models demonstrated good fits with the data suggesting
that it is feasible to estimate the number and discovery rate
of latent vulnerabilities.

Alhazmi, Malaiya, and Ray [20] extend defect density, a
common software quality metric, introducing vulnerability
density which is calculated as the ratio of vulnerabilities per
1,000 lines of code. They applied vulnerability density and
a vulnerability to defect ratio of 1-5% from the literature
to arrive at estimates for known and residual (latent)
vulnerabilities in several popular operating systems. This
paper extends that work but differs from Alhazmi primarily
in the method to estimate total flaws and on certain other
assumptions discussed later.

Shin and Williams [21] consider whether software fault
prediction models can be used for vulnerability prediction

Page 5515

3

using an empirical study of the Mozilla Firefox web browser.
The results suggest that fault prediction models based
on traditional software quality metrics can be used for
vulnerability prediction supporting our work. In the context
of the Firefox data, they observed a vulnerability to defect
ratio of 15%.

The study of software quality metrics has a history dating
back to at least the 1990s. Radjenovic et al. [22] examines
106 papers from seven journals between 1991 and 2011
where software metrics for fault prediction were empirically
validated. The source lines of code (SLOC, also abbreviated
LOC or KLOC, for thousands of lines of code) metric was
deemed an effective software quality metric across various
life cycle phases, languages, and sizes. LOC was observed to
correlate with number of faults in six studies; however, size
does not predispose software to be faulty.

Ozment and Schechter [23] analyze 7.5 years of vulner-
ability reports for 15 versions of OpenBSD, an operating
system known for its emphasis on security, and for which
complete source code and change history is readily available.
They observed that 62% of the vulnerabilities reported during
the study period were foundational (i.e. originated in the first
version) and 61% of source code remained unchanged during
the 15 versions. Moreover, the lifespan of a vulnerability is at
least 2.6 years. They also noted that, while new code resulted
in new vulnerabilities, an assertion we adopt, they were unable
to demonstrate a significant correlation between the number
of new lines of code and the number of new vulnerabilities
reported.

III. ESTIMATION APPROACH

To test our hypothesis that cyber risk assessment approaches
that depend on vulnerability enumeration will tend to
significantly undercount vulnerabilities in complex software
systems, we develop an estimation approach described in this
section. Support for the hypothesis would provide motivation
to seek risk assessment approaches that do not depend solely
on vulnerability enumeration.

Figure 2 places the latent vulnerability metric we develop in
this paper into context. S represents the target software system
under consideration. We define a number of variables related
to S, as summarized in Table II.

Fig. 2: Known vs. Unknown Vulnerabilities

Variable Meaning with respect to S
Stv Total number of vulnerabilities present in S
Skv Number of known vulnerabilities in S
Suv Number of unknown vulnerabilities in S

Sflaws Total number of flaws in S
Sfr Rate at which software developers introduce flaws into S
Svr Fraction of Sflaws that represent exploitable vulnerabilities
Skloc Thousands of lines of code in S

TABLE II: Variables in the Estimation Approach

As the table shows, Stv is the total number of vulnerabilities
present in S, Skv is the number of known vulnerabilities in S,
and Suv is the number of unknown vulnerabilities in S. Stv

is the sum of known and unknown vulnerabilities in S (1).

Stv = Skv + Suv (1)

While we know of no way to estimate Suv directly, if
we can arrive at estimates for Stv and Skv , then a simple
rearrangement of (1) yields (2), which is analogous to equation
(3) in Alhazmi [20].

Suv = Stv − Skv (2)

The task then becomes one of estimating Stv and Skv , which
we discuss next.

A. Estimating Stv

As has been well documented [24][25], software developers
unwittingly introduce flaws or defects into their software as
they carry out development. We define a software flaw as an
aspect of S that violates the implicit or explicit requirements
for that system. Our estimate of Stv is based on the premise
that some fraction of flaws in S will be exploitable vulnerabil-
ities. Thus, we must first estimate the flaw rate, Sfr. We can
estimate Sfr using a measure of the software system size, e.g.,
thousands of source lines of code, Skloc, or function points
[26]. We chose to use source lines of code, Skloc, so equation
(3) yields the number of flaws in S as a product of the software
size and flaw rate.

Sflaws = Sfr × Skloc (3)

While lines of code is not a perfect metric, it serves the
purpose relative to the larger question that this paper explores.
There is precedent in using lines of code. As Camilo, et al.,
[27] state:

Number of features, source lines of code, and num-
ber of pre-release security bugs are, in general, more
closely associated with post-release vulnerabilities
than any of our non-security bug categories.

If we can determine Svr, the fraction of Sflaws that rep-
resent exploitable vulnerabilities, then equation (4) gives an
estimate of the total vulnerabilities, Stv .

Stv = Sflaws × Svr (4)

Combining (2), (3) and (4) above yields (5), an equation for
estimating Suv , the unknown vulnerabilities in S.

Page 5516

4

Suv = (Sfr × Skloc × Svr)− Skv (5)

As Skloc is known and Skv can per estimated, per the next
section, the task now becomes determining reasonable values
for the flaw and vulnerability rates of S, namely Sfr and Svr.

Research has sought to determine the rate at which software
flaws occur. Alhazmi [20] looked across various sources of
system-specific defect data available at the time to estimate
defect rates. However, such data can be difficult to find and,
we suspect, undercounts flaws given the point-in-time nature
of such data.

We explore an alternative approach based on the Capability
Maturity Model (CMM) [28], which allows us to be more
predictive. Jones [25] studied known flaw rates occurring in
different types of organizations using the CMM level as the
basis of distinguishing organizations (Figure 4).

Organizations can achieve a CMM rating by meeting
requirements associated with a given rating level plus all
requirements of lower levels. There are five levels: 1-Initial,
2-Repeatable, 3-Defined, 4-Managed, and 5-Optimizing. All
organizations begin at level 1. Organizations qualify for
level 2 when they employ disciplined processes for software
configuration management, quality assurance, project tracking,
and requirements management. Level 3 organizations add
processes such as peer reviews, software product engineering,
and integrated software management. Level 4 adds software
quality management and quantitative process management,
and, lastly, level 5 adds process and technology change
management and defect prevention (Figure 3 [29]).

Fig. 3: Summary of CMM Levels [29]

As Jones discovered, based on an analysis of approximately
9,000 software projects over 15 years, flaw rates in software
decrease in a roughly linear fashion as a function of rising
CMM levels. For example, developers in an organization
at CMM Level 2 can be expected to introduce about 6.2
flaws per KLOC, whereas a CMM Level 4 organization
introduces about 2.2 flaws per KLOC. Jones’ flaw rate data
is based on flaws found, which is a subset of the total flaws
actually present. Since we do not know how large the subset

is, relative to the whole, we ignore this difference to be
conservative in our analysis.

Fig. 4: Software Defects by Organizational Maturity

We can thus estimate the number of flaws; however, it bears
repeating that not all flaws are vulnerabilities that attackers
can exploit for a security breach. For example, a flaw in a
help system that displays the wrong help text is unlikely to be
exploitable as a security flaw, whereas a buffer overflow flaw
may be an exploitable vulnerability. For our purposes, we
need to know the fraction of flaws in a system that actually
represent exploitable vulnerabilities. To be conservative, we
use a figure of 1% for Svr in this paper, an estimate we base
on a discussion by Alhazmi [20].

Table III presents Stv for five operating system flaw
rate scenarios. Scenarios 1 and 2 are the Windows NT
and Windows 2000 entries from Table 1 of Alhazmi [20].
Scenarios 3, 4, and 5 represent a generic 50,000 KLOC
OS-scale software system developed at CMM levels 5, 4, and
3 respectively from Figure 4. On the assumption that most
professional software organizations are, in 2017, above CMM
level 2, we ignore the CMM level 1 and 2 cases, though
some might argue for their inclusion.

Scenario OS KLOC Sfr Sflaws Svr Stv

1 Win NT 16,000 0.63 10,000 1% 100
2 Win 2K 35,000 1.80 63,000 1% 630
3 Generic 50,000 1.00 50,000 1% 500
4 Generic 50,000 2.20 110,000 1% 1,100
5 Generic 50,000 4.90 245,000 1% 2,450

TABLE III: Total Vulnerability Stv Estimates

For example, in the table Scenario 2 is for Windows 2000,
which consists of 35k lines of code. An estimated flaw rate
of 1.8 flaws per thousand lines of code implies 63k flaws
(1.8 × 35k), which yields an estimate of 630 exploitable
vulnerabilities (63k × 1%).

B. Estimating Skv

One can estimate the known vulnerabilities, Skv , by
searching openly available vulnerability repositories for
vulnerability data concerning S. One example of such a

Page 5517

5

repository is NVD, mentioned earlier. While one can find
major Commercial Off-the-Shelf (COTS) products (e.g.,
operating systems and applications) in NVD, published
vulnerability data on custom-built systems within an
enterprise are unlikely to be present in such repositories.
Another complicating factor is that such repositories contain
known vulnerabilities data up to a point in time. The longer
S is in use, the more time the community has had to find
vulnerabilities in S, so, in general, Skv can be expected
to rise over time and then eventually begin to level off as
S is superseded (e.g., the case of Windows XP from Table IV).

Based on the limitations of data from openly available
vulnerability repositories as mentioned above, we confine our
known vulnerability estimates to major operating systems.
Table IV represents data extracted from NVD showing vul-
nerabilities discovered per year for the Linux Kernel, Red Hat
Linux, Mac OS, and four major versions of Windows.

OS 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Linux Kernel 63 76 105 125 86 116 189 135 86 218
Red Hat Linux 38 37 17 40 35 57 198 223 234 253
Mac OS 106 94 81 97 74 37 72 151 444 215
Win. XP 34 34 89 98 101 43 87 7
Win. Vista 31 29 76 86 95 42 95 34 136 125
Win. 7 15 64 102 44 99 36 147 134
Win. Svr 2012 5 51 38 155 156

TABLE IV: Vulnerabilities discovered by OS by year

The median annual discovery count for OS-scale software
systems calculated from the values in Table IV is 86. We use
this figure rather than a cumulative count as the value for Skv

based on the following assumption and hypothesis. While in
general there is a lag in patching from the time of vulnerability
discovery, we make a simplifying assumption that patching
is immediate upon discovery, thus effectively eliminating the
corresponding known vulnerability from S. We hypothesize
that new vulnerabilities arise about as fast as old vulnerabilities
are discovered and patched, justified by the observation that
new vulnerabilities stem from the addition of features and the
patching process itself. This hypothesis is also justified in part
by Camilo, et al. [27]:

The strongest indicators of vulnerability are past
security-related bugs and new features.

While eventually vulnerability discovery and introduction
rates drop as software interest and use falls off, the hypothesis
implies that we never really get ahead. A plot of the median an-
nual discovery rate across OSs appears to support this assertion
(Figure 5), as, rather than dropping off, annual discovery rates
overall tend to increase, at least for this particular dataset. Note
that the plot covers Red Hat Linux, Mac OS, and Windows XP,
Vista, and 7, as these OSs had non-zero known vulnerability
counts over the years 2009-2016.

IV. ANALYSIS

Applying equation (5) to the data in Table V (an extension
of Table III), we estimate Suv . We note that the percentage
that Suv represents of Stv (% column) stays well above the

Fig. 5: Median Vulnerabilities Discovered Annually:
2009-2016

50% mark for all but Scenario 1, which represents the case of
Windows NT. At 16,000 KLOC, Windows NT is far smaller
in size than modern operating systems.

Scenario Sfr Skloc Sflaws Svr Stv Skv Suv %
1 0.63 16,000 10,000 1% 100 86 15 15.0%
2 1.80 35,000 63,000 1% 630 86 544 86.3%
3 1.00 50,000 50,000 1% 500 86 414 82.8%
4 2.20 50,000 110,000 1% 1,100 86 1,014 92.2%
5 4.90 50,000 245,000 1% 2,450 86 2,364 96.5%

TABLE V: Unknown Vulnerability (Suv) Results

Figure 6 graphically depicts unknown flaw percentages in
each of the five scenarios.

Fig. 6: Percent of total vulnerabilities that are unknown for
each scenario

Our hypothesis, that currently the community can only
enumerate a minority of software vulnerabilities present in a
large software system, was borne out in 4 of the 5 scenarios
considered. Pending independent validation of equation (5),
as discussed in the next section, this result suggests that risk
assessment methods that depend upon enumerating known vul-
nerabilities will tend to greatly undercount the actual vulner-
abilities present. Specifically, if one assesses risk by positing
attacks based on known vulnerabilities, as is commonly done,
then the risk assessment will only consider a small fraction of
all possible attacks and will thus likely underestimate the risk.

Page 5518

6

V. CONCLUSION AND FUTURE WORK

A. Conclusion

This paper explored the efficacy of basing a cyber risk
assessment on the enumeration of known vulnerabilities. To
examine this question, we developed a metric, described in
equation (5), to estimate the total number of unknown or
latent vulnerabilities in a large software system. The equation
requires an independent means of validation, discussed
below in Future Work; however, preliminary analysis of
empirical data with this equation suggests that, except in the
most optimistic scenario, the majority of vulnerabilities in
such systems remain latent at any given time. Indeed, with
respect to the research question posed earlier, the authors
are concerned that we may never really get ahead in our
race to discover all latent vulnerabilities because even as
the community discovers and eliminates vulnerabilities, new
vulnerabilities are introduced with software feature upgrades
and during the patching process itself.

This finding raises concerns about the efficacy of
vulnerability-centric cyber risk assessments given the lack
of any systematic procedure for finding all vulnerabilities in
large-scale software systems. We therefore suggest caution in
interpreting results from such assessments because the number
of unknown vulnerabilities in large-scale software tends to
exceed known vulnerabilities, and we furthermore suggest
risk assessment methodologies should consider both known
and unknown vulnerabilities, something not commonly done
today, though there are exceptions. For example, as part of the
risk analysis process, MIRA [30] hypothesizes the existence of
latent vulnerabilities and analyzes their potential effects. The
findings also support the concept that mission resilience to
cyber attack should be nurtured and explored, as prevention-
centric mitigation strategies are inherently disadvantaged
given that latent vulnerabilities lie in wait for adversaries. In
this regard, the NIST Resilience Framework [31] emphasizes
not only prevention, but also detection, response, and recovery.

B. Future Work

There are a number of future work possibilities, as given in
the list below:

1) Explore ways to independently validate equation (5).
There are two assertions embedded in the equation that
could be validated, together or separately. In particular,
(a) can the number of flaws in a software system can
be expressed as a linear function of the size of the
software and a rate of introduction? and (b) can the total
vulnerabilities can be expressed as a linear function of
the flaws and a flaw rate?;

2) Repeat the analysis with updated flaw rate data;
3) Design and carry out experiments to tease out a typi-

cal ratio of vulnerabilities introduced vs. vulnerabilities
patched across software system updates;

4) Analyze vulnerability data for software beyond operat-
ing systems (e.g., commercial or open source software)

to examine how flaw and discovery rates vary in other
contexts;

5) Expand beyond software to study vulnerability rates
related to non-software contexts, including weaknesses
in people and processes; and

6) Compare flaw rate predictions from analyses such as that
done by Jones [25] to empirical flaw data gathered over
the life of a target software system.

Item 1) above is challenging given the lack of any
systematic procedure for finding all software vulnerabilities.
Thus, an absolute ground truth measurement of Suv

is unavailable. However, heuristic approaches could be
explored. For example, Chowdhury, and Zulkernine [32] find
that software complexity, coupling, and cohesion metrics
are correlated to vulnerabilities at a statistically significant
level. While their research was focused on web browsers, an
investigation of the applicability of the approach to operating
system-scale software could be undertaken as one means to
generate independent data for comparison to equation (5).

Finally, concerning item 4) above, Table VI summarizes
data gathered from NVD [7] for vulnerabilities discovered
in selected major application software in 2016. The counts
indicate that non-O/S software is an area ripe for investigation
for the type of analysis described in this paper.

Application Vulnerability Count
Adobe Flash Player 249
Adobe Acrobat 224
Google Chrome 159
Mozilla Firefox 133
MS Internet Explorer 122
PHP 107
Wireshark 95

TABLE VI: Sample Application Vulnerabilities Discovered
in 2016

REFERENCES

[1] Cybersecurity Ventures, “Cybersecurity Market Report,” 2016.
[2] National Institute of Standards and Technology, “National Institute of

Standards and Technology 800-30: Guide for Conducting Risk As-
sessments,” Tech. Rep. September, National Institute of Standards and
Technology, 2012.

[3] Wikipedia, “Source lines of code.”
[4] Hewlett Packard Enterprise Security Research, “Cyber Risk Report

2015,” 2015.
[5] Apple, “Secure Coding Guide,” 2016.
[6] J. Viega, M. Howard, and D. LeBlanc, 24 Deadly Sins of Software

Security: Programming Flaws and How to Fix Them. McGraw-Hill
Education, 1st ed., 2009.

[7] NVD, “National Vulnerability Database.”
[8] S. Özkan, “CVE Details,” 2017.
[9] National Institute of Standards and Technology (NIST), “NVD CVSS

Support,” 2017.
[10] R. Caralli, J. Stevens, L. Young, and W. Wilson, “Introducing OCTAVE

Allegro: Improving the Information Security Risk Assessment Process,”
2007.

[11] J. Wynn, J. Whitmore, G. Upton, L. Spriggs, D. McKinnon, R. McInnis,
R. Graubert, and L. Clausen, “Threat Assessment and Remediation
Analysis Methodology,” 2012.

[12] ISACA, “COBIT 5 Framework,” 2012.
[13] T. Llanso, P. Hamilton, and M. Silberglitt, “MAAP : Mission Assurance

Analytics Platform,” in IEEE Homeland Security Technologies Confer-
ence, (Boston), pp. 549–555, 2012.

Page 5519

7

[14] K. Jabbour and J. Poisson, “Cyber Risk Assessment in Distributed
Information Systems,” 2016.

[15] M. A. McQueen, T. A. McQueen, W. F. Boyer, and M. R. Chaffin, “Em-
pirical Estimates and Observations of 0Day Vulnerabilities,” in System
Sciences, 2009. HICSS ’09. 42nd Hawaii International Conference on,
pp. 1–12, jan 2009.

[16] J. Jones, “Estimating Software Vulnerabilities,” IEEE Security & Pri-
vacy, vol. 5, no. undefined, pp. 28–32, 2007.

[17] S. Zhang, D. Caragea, and X. Ou, An Empirical Study on Using the
National Vulnerability Database to Predict Software Vulnerabilities,
pp. 217–231. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[18] O. H. Alhazmi and Y. K. Malaiya, “Application of Vulnerability Dis-
covery Models to Major Operating Systems,” IEEE Transactions on
Reliability, vol. 57, pp. 14–22, mar 2008.

[19] S.-W. Woo, H. Joh, O. H. Alhazmi, and Y. K. Malaiya, “Modeling
vulnerability discovery process in Apache and IIS HTTP servers,”
Computers & Security, vol. 30, no. 1, pp. 50–62, 2011.

[20] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, “Measuring, analyzing and
predicting security vulnerabilities in software systems,” Computers &
Security, vol. 26, no. 3, pp. 219–228, 2007.

[21] Y. Shin and L. Williams, “Can traditional fault prediction models be used
for vulnerability prediction?,” Empirical Software Engineering, vol. 18,
no. 1, pp. 25–59, 2013.

[22] D. Radjenovic, M. Hericko, R. Torkar, and A. Zivkovic, “Software
fault prediction metrics: A systematic literature review,” Information and
Software Technology, vol. 55, no. 8, pp. 1397–1418, 2013.

[23] A. Ozment and S. Schechter, “Milk or wine: Does software security
improve with age?,” in Usenix Security, 2006.

[24] D. Jones and S. Gregor, “The Anatomy of a Design Theory,” Journal
of the Association of Information Systems, vol. 8, no. 5, 2007.

[25] C. Jones, Software Assessments, Benchmarks, and Best Practices.
Addison-Wedley Information Technology Series, 2000.

[26] J. E. Matson, B. E. Barrett, and J. M. Mellichamp, “Software devel-
opment cost estimation using function points,” IEEE Transactions on
Software Engineering, vol. 20, pp. 275–287, apr 1994.

[27] F. Camilo, A. Meneely, and M. Nagappan, “Do Bugs Foreshadow
Vulnerabilities?: A Study of the Chromium Project,” in Proceedings of
the 12th Working Conference on Mining Software Repositories, MSR
’15, (Piscataway, NJ, USA), pp. 269–279, IEEE Press, 2015.

[28] M. Paulk, C. Weber, S. Garcia, M. B. Chrissis, and M. Bush, “Key
Practices of the Capability Maturity ModelSM, Version 1.1,” tech. rep.,
1993.

[29] K. Hartman, “CMM & Organizational Process Maturity,” 2012.
[30] T. Llanso, G. Tally, M. Silberglitt, and T. Anderson, “Applicability Of

Mission-Based Analysis For Assessing Cyber Risk In Critical Infrastruc-
ture Systems,” in International Federation for Information Processing
(IFIP) - Critical Infrastructure Protection VII, vol. VII, ch. 9, pp. 135–
148, Springer Berlin Heidelberg New York, 2013 ed., 2013.

[31] National Institute of Standards and Technology, “Framework for Im-
proving Critical Infrastructure Cybersecurity,” tech. rep., 2014.

[32] I. Chowdhury and M. Zulkernine, “Can Complexity, Coupling, and
Cohesion Metrics Be Used As Early Indicators of Vulnerabilities?,” in
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC
’10, (New York, NY, USA), pp. 1963–1969, ACM, 2010.

Page 5520

