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ABSTRACT 

 

Soil is an important natural resource and has the potential to provide food security, 

mitigate climate change, and protect coastal and inland ecosystems from degradation if it is in, or 

is restored to, a healthy and resilient state. Measuring soil health allows land managers to track 

improvements or degradation over time and optimize their management strategies for long term 

benefits of the land by use of a soil health index. However, such soil testing methods and 

analysis necessary to monitor changes are not currently established for the unique soils of 

Hawaiʻi. Ten soil series samples within six soil orders were collected from 22 field sites on 

Oahu, Molokai, and Maui, spanning a range of soil conditions and land cover including cropland, 

forest, and grassland to capture high diversity. A suite of 30 potential soil health parameters 

measured physical, chemical, and biological soil properties. Multivariate analysis identified 

those parameters which could be used as indicators of soil health based on their sensitivity to 

changes in the soil characteristics as well as their practicality for routine soil testing. Current and 

previous management based on land use history showed the greatest association to the variance 

in soil data and created an associated potential gradient of soil health. Nine indicators from a 

reduction process using quantitative and qualitative criteria comprise the recommended soil 

health indicators for detecting differences in management practices across a spectrum of soil 

health and include: water holding capacity, water-stable mega-aggregates, percent total organic 

carbon, C:N ratio, 24 hour CO2 burst, β-glucosidase, β-glucosiminidase, hot water extractable 

organic carbon, and potentially mineralizable nitrogen. The proposed indicators were effective in 

detecting differences in management across the full landscape as well as qualitative differences 

in soil management within soil order, which highlighted soil taxonomy as an important inherent 
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contributor to data variance. These most practical and sensitive indicators of soil health will be 

used in further field trials which will be necessary to determine the effectiveness of 

implementing new soil health management strategies as well as to identify the quantitative 

thresholds used in developing scores in a Hawaiʻi soil health index.  
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CHAPTER 1. INTRODUCTION TO SOIL HEALTH* 
*Reproduced with edits and permission from Hubanks et al., 2018 

 

1.1 Earth’s precious resource, soil 

Defining soil 

The origins of soil science began in the early 1800’s with the most significant transitions 

in the field happening in more recent decades, and definitions of ‘soil’ have varied over the 

centuries. A Google search defines ‘soil’ as “the upper layer of earth in which plants grow, a 

black or dark brown material typically consisting of a mixture of organic remains, clay, and rock 

particles,” where the soil is portrayed in a rather simple and non-complex manner (OED, Web). 

In contrast, those who study soils define it more specifically to be “a dynamic natural body 

composed of mineral and organic solids, gases, liquids, and living organisms which can serve as 

a medium for plant growth and that has properties resulting from the integrated effects of climate 

and living organisms acting upon parent material, as conditioned by topography, over periods of 

time” (Brady and Weil, 2008). With this more explicit definition, we see the soil’s importance 

connecting Earth systems involving plants, organisms and the atmosphere.  

Soil organic matter 

The composition of most undisturbed soil consists of approximately 25% air (as pore 

space), 25% water, 45% mineral particles, and 5% as organic matter. When soil is compacted, 

the mineral ratio is increased as the pore space, water, and organic matter portions all typically 

decrease. Soil organic matter (SOM) includes plant, animal, and organism residues/tissues at 

various stages of decomposition as well as microbial-synthesized substances (Brady and Weil, 

2008). While organic matter represents a very small portion of a soil, it plays a fundamental role 

influencing all aspects of soil function. Organic matter in the soil is largely made up of carbon, 
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which provides a substrate as well as a food source for soil life and is actively cycled throughout 

all natural systems. With its main constituent carbon, SOM contributes to a soil’s fertility, 

atmospheric carbon sequestration, and ecosystem productivity (Harden et al., 2017).  

Soil functions 

Six key roles of soil have been identified for any ecosystem which are 1) a medium for 

plant growth, 2) a system for water supply and purification, 3) a recycling system for nutrients 

and organic wastes, 4) a habitat for soil organisms, 5) a modifier of the atmosphere, and 6) an 

engineering medium (Brady and Weil, 2008). Soil assists in many important ecosystem services, 

which are the benefits humans obtain from natural systems, such as provision of clean water and 

climate regulation (Brady and Weil, 2008). Understanding soil processes goes beyond the 

laboratory to encompass a larger holistic system, as it impacts and is impacted by many 

components of an environment such as vegetation, animal inhabitants, precipitation, pollution, 

agriculture, climate, and human activity.  

1.2 Historical moments in soil management 

Agriculture evolution 

Soil has been cultivated to support agriculture long before the scientific understanding of 

it arrived. With the increasing global need for food production and environmental sustainability, 

the need to further understand soil health continues to grow. Standard practices of modern 

agriculture, such as tillage and fertilizer application, lead to the loss of SOM and hence 

considerable degradation of soil quality and function. Within the last century in the United States 

and particularly in Hawaiʻi, agricultural land has experienced excessive tilling and poor 
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management. A clear historical example of such poor soil management was the Dust Bowl Era. 

While it was the inevitable drought from 1931 to 1939 that ultimately led to the Dust Bowl, the 

soil quality was worsened due to excessive tillage of the land prior to this climatic condition 

(Baumhardt, 2003). This landmark event has pushed agriculture to develop practices better suited 

to the needs of specific soil types and natural conditions of the land, rather than attempting to 

impose farming practices suitable for humid regions on the semiarid Great Plains, as was seen 

during the Dust Bowl (Baumhardt, 2003). The conventional practices of tillage and fertilizer use 

pose the risk of soil organic matter loss by multiple mechanisms, such as increased carbon 

oxidation and damage to the microbial activity (Al-Kaisi and Yin, 2005). These same trends in 

agriculture are responsible for the degraded state of soil found across the state of Hawaiʻi, due to 

plantation agriculture and commercial farming using conventional soil management practices.  

Historic events such as the Dust Bowl along with many advances in technology have 

contributed to the growth of the soil health topic. Norman Borlaug’s ‘Green Revolution’ also 

played a crucial role as it allowed farmers to view soil as a system that can be manipulated with 

alterations in soil chemistry and composition using improved methods of soil research and 

technology (Tilman, 1998). The Green Revolution was in part dependent on the creation of the 

Haber-Bosch process, or industrial nitrogen fixation, which assisted to manipulate soils for the 

growth of agriculture worldwide (Erisman et al., 2008). With the ability to fix atmospheric 

nitrogen into a plant available nitrogen fertilizer, typically a limiting essential nutrient in many 

soil systems, the production of food was able to expand and intensify with much less restriction 

and became more available globally (Brady and Weil, 2008). However, with this great power to 

create endless amounts of nitrogen fertilizer came great responsibility to be mindful of the 

impacts of expanding agriculture on the soil and surrounding ecosystems. For example, the 
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readily-available forms of nitrogen from the Haber-Bosch process has led to serious issues in 

water quality and eutrophication, a negative impact of nutrient surplus on water ecosystems. By 

altering the ratios of soil nutrients, chemistry, and composition during the Green Revolution, yet 

still seeing degradation in soils, it became apparent that there was more to understanding soil 

management than the inherent soil characteristics such as nutrient cations, soil texture, or 

drainage class. As a result, agricultural science began to acknowledge how soil functioned as a 

larger dynamic system requiring a larger scope of focus and attention.  

Emergence of the soil quality concept 

The term ‘soil quality’ is a relatively new concept that evolved throughout the late 1900s 

after the merging topic of ‘sustainable agriculture’ gained momentum in response to the need for 

increased global emphasis of soil management (Karlen et al., 2008). One of its early definitions 

in 1989 was “the ability of a soil to support crop growth which includes factors such as degree of 

tilth, aggregation, organic matter content, soil depth, water holding capacity, infiltration rate, pH 

changes, nutrient capacity, and so forth.” It went on to be described in 1992 as “the capability of 

soil to produce safe and nutritious crops in a sustained manner over the long-term, and to 

enhance human and animal health, without impairing the natural resource base or harming the 

environment” (Doran and SSSA, 1994). As the term evolved to be more mindful of the whole 

ecosystem with humans included, a broader encompassing term, ‘soil health,’ developed which 

is commonly defined as “the continued capacity of soil to function as a vital living system, 

within ecosystem and land-use boundaries, to sustain biological productivity, maintain or 

enhance the quality of air and water, and promote plant, animal and human health” (Doran et al., 

1996, Doran and Zeiss, 2000, Laishram et al., 2012). A difference in this evolution of terms is 
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the perception that ‘soil health’ tends to include more biotic components of soil and expands the 

goals of soil maintenance beyond those which serve only the purpose of agricultural needs 

(Anderson, 2003, Laishram et al., 2012). 

The evolution of the ‘soil quality’ concept to include the term ‘soil health’ supported the 

advancement of soil as an ecosystem science and literature on soil health could expand the 

boundaries of traditional soil science. With data available until 2008, the comparison between 

the frequencies of printed phrases ‘soil quality’ and ‘soil health’ since 1900 shows that a notable 

presence of ‘soil health’ in printed literature began in the mid-1990s in union with a steady 

increase in the use of ‘soil quality’ (Figure 1.1). Around the year 2000, the term ‘soil health’ 

continues to slowly increase and ‘soil quality’ simultaneously appears to take a sharp decline in 

frequency of use in published works. However, as a more widely accepted term, ‘soil quality’ 

still shows up more frequently than ‘soil health’ in 2008.  

 

Figure 1.1 The relative frequencies of terms ‘soil quality’ and ‘soil health’ over time, demonstrating the 

decline in use of ‘soil quality by 2000 after continual increase since 1900, and the steady incline of ‘soil 

health’ beginning in the mid-1990’s (Google Ngram tool, https://books.google.com/ngrams).  
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While these terms are often still used interchangeably and with various definitions, the 

term of interest for modern soil assessment, ‘soil health,’ can be referred to as “the continued 

capacity of soil to function as a vital living ecosystem that sustains plants, animals and humans” 

(NRCS, 2017). This holistic focus on ‘soil health’, in place of ‘soil quality’, encourages 

opportunities to understand and manage whole soil ecosystems as well as introducing challenges 

as to how to quantify such a vast area of science with expansive global diversity and importance. 

1.3 Impact of soil on climate change and environmental sustainability 

Global warming and the reduction of soil carbon stocks 

Historical moments are not only important for reminding modern farmers of the potential 

consequences of poor soil management, they also coincide with long-term damage of such 

consequences to the global climate. Human activities, such as deforestation, have led to increases 

in atmospheric carbon dioxide (CO2, a greenhouse gas), posing serious threats to the globe via 

the greenhouse effect, such as sea level rise, rising temperatures, and more frequent and intense 

natural disasters. In a natural ecosystem, soil has the ability to store carbon long-term (referred to 

as carbon sequestration) that would otherwise be emitted from the soil or remain in the 

atmosphere. Poor agricultural practices disrupt the function of natural soils, which typically act 

as a sink for carbon. Other large natural sinks for carbon are in forests, atmosphere, and oceans, 

however, soil is estimated to contain more carbon than in all plant life and the atmosphere 

combined and is Earth’s largest biogeochemically active terrestrial pool of carbon (Jackson et al., 

2017). 
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Replenishing soil carbon stocks through carbon sequestration is a potential solution to 

mitigate climate change, but it requires more research to understand the physical, chemical, and 

biological processes involved that increase soil carbon storage. In doing so, research must also 

continue to examine how soil carbon can be protected from decomposition to avoid releasing it 

back into the atmosphere through microbial metabolism. Soil health relies heavily on both the 

presence of organic matter and life in the soil, which correlate to and are reliant on the soil 

organic carbon content. Promoting the accumulation of organic matter, and hence, organic 

carbon, and supporting microbial decomposition in the soil are necessary processes to be 

included in soil health management plans. Thus, supporting soil health through proper 

management is not only vital to continue agriculture, but it also connects soil health to climate 

change mitigation and building soil carbon stocks.  

Soil as a facilitator of agroecosystem health 

Such global changes and population growth suggest that our dependence on soil as a vital 

resource will continue to increase, along with our understanding of the complex interactions and 

functions it has with the environment (Karlen et al., 2003). In addition to climate control, soil in 

good health may impact pest population reduction, support biodiversity, increase soil fertility, 

improve disease resistance, reduce the cost of agricultural practices, and increase drainage of 

water systems, to name just a few (Janvier et al., 2007, Brady and Weil, 2008). Soil in poor 

health can lead to issues related to but not limited to: erosion, nutrient depletion, slow water 

infiltration, soil contaminant accumulation, soil compaction, low biodiversity, and plant disease 

(Soil Health Institute, 2017). The outcomes of improving soil health can also be seen at global 
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scales with examples such as extreme weather resilience and improved air and water quality 

(Soil Health Institute, 2017). 

Similar to human health, where symptoms of poor health and disease can be complex and 

difficult to fix with one perfect cure, challenges with soil health are complex and tied to their 

environments and thus, are treated differently based on climatic zone, intended function, culture, 

and resources available. To precisely improve soil conditions, like improving global human 

health, common language, measurements, and communication are crucial to allow for 

information to be shared and advances to be made. The success of better assessing soil health in 

Hawaiʻi could lead to improvements in food security, water purification and conservation, 

wildlife conservation, climate change mitigation, and relief from financial challenges of 

agriculture (Brady and Weil, 2008).  

1.4 Assessments of soil health 

Inherent soil qualities and soil taxonomy 

Over time, soil health studies have been transformed from encompassing mostly inherent 

qualities of soil into more dynamic qualities that identify soil as part of a complex ecosystem 

capable of either restoring or degrading the surrounding environment and its ecosystem services. 

With soil health now commonly viewed in a dynamic way, current research explores ways to 

better define the spectrum of soil health. One approach of soil studies is to simplify soil into two 

groups of characteristics: inherent and dynamic qualities. The inherent soil qualities focus on 

characteristics that on a large scale are not easy to change, and can be defined as “the aspects of 

soil quality relating to a soil’s natural composition and properties influenced by the factors and 
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processes of soil formation, in the absence of human impacts” (NRCS, 2018). The inherent soil 

properties closely align with the original perspective of ‘soil quality,’ as they pertain mostly to 

aspects of the soil that are easily measured and important for soil taxonomy such as texture, pH, 

bulk density, and organic matter content to differentiate between soil types, and mostly in the 

absence of human impacts (Karlen et al., 2003a). 

Each of the world’s soils belongs to one of the 12 taxonomic orders described by the U.S. 

Soil Taxonomy, based mostly on the inherent soil properties (Brady and Weil, 2008). Due to the 

diversity in these characteristic combinations, over 20,000 varieties, or series, of soil have been 

characterized in the United States alone. For example, the ‘Mollisol’ soil order is characterized 

by rich fertile soils with high organic matter content in the surface horizon developed from 

grasslands, with high cation exchange capacity (CEC) and high base saturation (Brady and Weil, 

2008). A lengthier taxonomic name, ‘very-fine, smectitic, calcareous, isohyperthermic cumulic 

vertic endoaquaolls,’ describes a specific Mollisol soil variety unique to its taxonomic 

conditions. Of the 12 soil orders, 10 are found in the Hawaiian Islands, including hundreds of 

different soil varieties within those soil orders. The amount of soil diversity in Hawaiʻi alone 

introduces many challenges, as well as opportunities, when attempting to apply global soil health 

concepts to all soils. The inherent qualities of soils differentiate them across taxonomy and result 

in a diversity of their measurable values related to soil health. Therefore, it is impractical to 

directly compare values reliant upon soil inherent qualities between varying taxonomic groups 

without standardization for such differences. 
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Dynamic soil qualities 

In contrast to the inherent soil properties of a soil, the dynamic soil qualities can be 

changed with soil management, land use, and climate change. Similar to the connection between 

inherent qualities and ‘soil quality,’ identifying the dynamic qualities of soils has emerged in 

unison with the term ‘soil health,’ as it builds off of the inherent soil properties and also provides 

more detail of the surrounding ecosystem, such as management-dependent soil changes like soil 

bulk density. Dynamic properties can be defined as “the soil properties that change as a result of 

soil use and management over the human time scale” (NRCS, 2018). This scope of soil 

properties associated with the soil health concept typically focuses on the top 0 to 15-30 cm of 

the soil profile and considers the status or condition of the soil due to land cover or management 

decisions (Karlen et al., 2003a). Examples of impacts from management that are important to 

consider when assessing soil health are: soil compaction by machinery, tillage of the soil, 

biodiversity present, crop type, irrigation, and fertilizer use (Brady and Weil, 2008). The 

complexities of unique soil taxonomy and dynamic impacts combined demonstrate why there is 

a need for soil assessments that capture many soil properties and functions and why one index 

may not be adequate to serve all soils.  

Indicators of soil health 

Soil health indicators are categorized into measurable attributes used to evaluate a soil’s 

overall health or detect changes in health. Indicators are quantifiable values relative to an optimal 

level or ‘natural soil state’ and are applied across environmental, biological, economic, social, 

institutional, and political disciplines to better grasp soil conditions and track soil health changes 

(Allen et al., 2011, Dalal et al., 2003). These indicators serve to assess soil health by linking 
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functional relationships of various soil characteristics and identifying these changes with 

correlations to land management and environmental impacts (Allen et al., 2011, Dalal et al., 

2003, Doran, 2002, Doran and Zeiss, 2000). Five critical soil functions have been identified for 

healthy soil in Hawaiʻi based off the essential functions of a soil in the greater global ecosystem 

as well as the local ecosystem, and which also support current goals of the state legislature to 

aggrade this natural resource (Table 1.1).  

Table 1.1 The five identified desired critical soil functions for healthy soil in Hawaiʻi and their related 

measurements. Critical soil functions are determined by assessing the spectrum of Hawaiian land uses in 

regards to fulfilling the current and future needs of the land.  

  

The major indicators of soil health can be separated into three categories: chemical, 

physical, and biological. Within each category is a subset of indicators used to represent a critical 

function of soil within the assessment of a soil’s overall health (an example of those identified 

for a Northeast region in the United States are presented in Table 1.2). For example, indicators 

such as available bulk density, soil hardness, and aggregate stability are considered physical; 

mineralizable nitrogen and microbial respiration, are considered to be biological; and pH, 

macronutrients, and total carbon, are considered chemical (Karlen et al., 2003, Moebius-Clune et 

al., 2016). The scientific relevance of a suitable indicator is considered based on things such as 
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its sensitivity to management, good correlation to beneficial soil functions, cost and ease to 

measure, and accuracy in measurement (Moebius-Clune et al., 2016, Laishram et al., 2012).  

To select potential indicators for a soil health test, a variety of approaches are available 

and no one correct way exists. Karlen et al. (2001) suggest two common approaches to acquire a 

minimum data set (MDS) including using expert opinion as well as principal component analysis 

(PCA), while acknowledging there are limits to the available information and local adjustments 

are typically necessary (2001). The PCA approach relies on a statistical technique to identify the 

indicators that best describe the greatest variation within data, and which are then considered to 

be more sensitive (Karlen et al., 2001, Andrews et al., 2002). In contrast, using expert opinion 

may call upon multiple scientists to represent the interdisciplinary backgrounds of soil health to 

determine important soil functions and practical indicators based on goals of the group (Karlen et 

al., 2001). Those seeking to assess soil health may choose a single or combined approach to 

identifying a MDS, as the objective for index development should be to develop an assessment 

made to a scale and sensitivity that suits the questions being asked and practical considerations 

for indicator selection will widely vary (Karlen et al., 2001).  

 

The Cornell Soil Health Assessment recommends choosing indicators for an index score 

based on the evaluation of a soil’s sensitivity to change in management practices, relevance to 

the soil processes and functions, consistency and reproducibility, ease and cost of sampling, and 

the cost of analysis (Moebius-Clune et al., 2016, Laishram et al., 2012). In reference to these 

parameters, the Cornell Soil Health Assessment has narrowed down from many options, just nine 

indicators to use for a soil health index (Table 1.2). They include: surface and subsurface 

hardness, water stable aggregates, available water capacity, active carbon, organic matter 
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content, soil protein, soil respiration, and soil chemical composition (Moebius-Clune et al., 

2016). Some of these have test methods established that have remained useful and relevant, such 

as nutrient levels (chemical composition), while the methods of some, such as water stable 

aggregates, are under debate as techniques are still being improved upon based on soil type 

differences and access to improved technology (Silva et al., 2015, Tisdall and Oades, 1982). 

Since not all indicators are best for all soils and a MDS is more practical than an elaborate and 

complex set, it is important to create indices that are easy to measure and interpret and are also 

robust.  

Table 1.2 A list of 43 potential soil health indicators developed by the Cornell Soil Health Team for use 

towards a soil health assessment protocol (Moebius-Clune et al., 2016). 
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Ultimately, the relevance of the selected indicators depends on the soil type and climate 

and what soil function is intended to be attained or maintained (Brady and Weil, 2008). A few 

specific factors to be considered as impacting indicator selection may include vegetation, 

topography, temporal variation, landscape position, tillage effect, soil water changes via 

irrigation or rainfall, temperature regimes, and anthropogenic decisions (Karlen et al., 2001). 

While it’s tempting to use a robust index with dozens of indicators, this is often impractical and 

previous studies have shown that careful selection of fewer soil health indicators can effectively 

be used to judge the impacts of management impacts on soil sustainability (Lima et al., 2013, 

Andrews et al., 2002a, Kelting et al., 1999). To achieve a robust and reliable measure of soil 

health, it is crucial to select indicators that are stable and do not vary widely on a short-term 

basis.  

While chemical and physical indicators are typically straightforward to measure, the 

nature of biological indicators as a function of living organisms and the roles they play in soil 

health are often more complex and therefore difficult to isolate (Moebius-Clune et al., 2016). 

Despite this challenge, soil biology is foundational to many important soil functions. For 

example, six key roles of soil microbes are: decomposition of organic matter (crop residue), 

mineralization and recycling of nutrients, fixation of nitrogen, detoxification of pollutants, 

maintenance of soil structure, biological suppression of plant pests, and reduction of parasitism 

and damage to plants (Stirling, 2014, Brackin et al., 2017).  These functions are also closely 

linked with both the chemical and physical properties of soil as they are dependent upon and 

contribute to the fluxes and flows of carbon, nutrients, changes in soil pH, soil structure, and 

aggregate stability, to name a few. In addition, microorganisms respond rapidly to environmental 

stress, allowing them to be a powerful tool in soil health assessment by indicating early signs of 
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change in soil health, at times preceding detectable change in physical or chemical indicators 

(Nielsen et al., 2002). Because of their diverse and complex interactions with soil and the more 

recent addition of biological indicators into the realm of soil health as a leading dynamic 

component, they are an area with large gaps of knowledge and possess great potential 

opportunity for growth in developing soil health indices (Kibblewhite et al., 2007, Karlen et al., 

2003a). 

Indicator selection for Hawaiʻi 

To begin tailoring a Hawaiʻi soil health index, a wide range of indicators have been 

selected based on consideration of those widely accepted from existing soil health tests of other 

regions, and by calling upon local expert knowledge of Hawaiian soil (Table 1.3) (Karlen et al., 

2001). A set of 20 potential indicators of soil health were compiled from expert opinion and 

resources available online from the Cornell Soil Health Assessment, Haney Soil Health Index, 

and USDA-NRCS. Indicators related to soil organic carbon stabilization were included because 

carbon plays a central role in soil health, and connects global carbon cycles to soil organic matter 

and soil life. While 20 indicators are impractical for a routine soil health index, the list represents 

a logical starting point to create a reduced list of indicators for Hawaiian soil health.  
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Table 1.3 Soil indicators selected for developing a soil health index in Hawaiʻi based on interest in 

improving desired soil functions for nutrient cycling, carbon storage, water infiltration and supply, 

biodiversity of soil life, and providing a productive medium for plant growth. 
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Building soil health indices 

The common approach to creating most soil health indices involves combining soil health 

indicators into varying scoring systems which are then integrated into creating one index (Karlen 

et. al., 2008). General guidelines of index development are stated by Karlen et al. to include the 

following steps: 1) identifying critical soil functions, 2) selecting meaningful indicators for those 

functions, 3) developing appropriate scoring functions to interpret the indicators for various soil 

resources and finally, 4) combining the information into values that can be tracked over time to 

determine if the soil resources are being sustained, degraded, or aggraded (2001). Once 

indicators are reduced from a potential list (Table 1.3) using those methods suggested (PCA and 

expert opinion), many formulas and options exist for weighting the value of indicators to sum 

into the final score. However, in general, the indicators are scored considering their value as 

‘more is better’ such as organic matter, deviation from ‘optimum’ such as pH, or ‘less is better,’ 

such as bulk density (Karlen et al., 1994, Moebius-Clune et al., 2016). Ranges of indicator values 

are typically assigned an integer value (e.g., 0-10) or nonlinear scoring function, as appropriate 

for the selected indicators. With these unitless scores, they can be combined across all index 

indicators to obtain a final health “score.” There are, however, a few hurdles with this approach 

of assigning how heavily to factor in different indicators or threshold values, such as determining 

which indicators remain relevant over time, the inherent differences of the soil types being 

compared on the same index, and the specific goals for land use (Gugino, 2007). Using the 

strength of the PCA correlations can also provide insight on how to weigh various indicators 

(Andrews et al., 2002).  
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The soil management assessment framework (SMAF) developed by Andrews et al., 

(2004) and further developed by Wienhold et al., (2009) provides an additional method for a 

scoring curve protocol of soil health indicators. SMAF uses non-linear scores to develop unitless 

scores from algorithms or logic functions following the form of more is better, less is better, or 

optimal values (Weinhold et al., 2009). From a selection of potential indicators, values from a 

large dataset are plotted with a range of environmental values and relationships are described 

with curve-fitting software. The algorithm-fit scoring program is then validated with a different 

set of data from that used to develop the algorithms. Limitations to the application of this process 

include that climate and inherent properties can impact results between sites, and that full 

datasets of values need to include a measure of soil function, similar to having a set response 

variable (Weinhold et al., 2009). 

Another consideration for soil health assessment is again the human factor of assessment, 

which emphasizes the value of an experienced soil scientist to evaluate soils. When available, 

expert opinion can be utilized to not only assist in selecting indicators for a MDS but also in 

determining optimal values (Lima et al., 2013). While this component of assessment is often 

thorough and effective, it is also limited by the time and proximity of those experienced in soil 

health and can be subjective. Continued studies in on-farm assessment and validation are 

necessary to further develop functional soil health assessment indices by region and expand such 

a valuable knowledge base (Kinyangi, 2007, Allen et al., 2011).  

Challenges observed in Hawaiʻi 

Agricultural land in Hawaiʻi has been dominated by intensive monoculture farming for 

more than a century, leaving degraded soils with negative impacts such as loss of organic matter, 
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decreased nutrient cycling and supply capacity, decreased water infiltration, susceptibility to 

erosion, acidification, and accompanying toxicity. In addition to these conditions, Hawaiʻi’s 

unique topography, tropical climate and precipitation gradients have led to a variety of soil types 

and require a soil health index with adequate flexibility to address such diverse agroecosystems. 

Current soil health indices have not yet been tailored for Hawaiian soils and there is a lack of 

research related to indicator testing for Hawaiʻi soils. While not directly applicable to Hawaiʻi, 

existing tests such as the Cornell Soil Health Assessment and Haney Soil Health Index do 

provide useful index structure to assist in the development of a Hawaiʻi soil health index (Table 

1.3). However, in order to develop a Hawaiʻi-specific soil health index, research on the 

sensitivities and threshold values of indicators under local conditions is required (Lima et al., 

2013). In addition, selecting indicators for a Hawaiʻi soil health index that are best understood 

and hold the most meaning for Hawaiian farmers is likely the best way to link soil science with 

farmer decision-making (Roming et al., 2005). 

1.5 Using soil health tests 

Cost and analysis 

To measure soil health, many options currently exist that use a range of indicators and 

methods, which vary in costs, reliability, comprehension, and real-life applicability. A basic soil 

health test offered by Cornell University is $60, but can easily reach $200 depending on the 

depth of personalized result interpretation, equipment needed, and add-on indicators measured, 

which is a common price range for current soil health testing facilities in the United States. 

Analysis time can range from a few days for simple in-field tests, to over a month for those 

requiring greater laboratory examination. The Cornell Soil Health Assessment and the Haney 
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Soil Health Index are two current approaches for soil health assessments in the United States. 

The test results provide a farmer with a soil health ‘score’ derived from a soil health index, 

demonstrating how it stacks up in comparison to qualities of soils with known health and 

possessing similar functions and qualities, or to the same soil from a previous sampling. The 

score can then be broken down within the physical, chemical, or biological categories and used 

to assess soil health improvement or degradation in each category. These tests also may offer 

management suggestions based on the type of results package a client requests. With the 

recommended guidance, the land manager can choose to add organic matter, use more or less 

fertilizer, select appropriate types of fertilizers, adjust soil disturbance, irrigation, or crop type, 

for example. Over time and with the use of continued testing, management styles can be tracked 

to show their effects upon the soil’s health and be used as a tool to measure changes in the soil as 

a result of management, land use, or environmental changes the land undergoes.  

Soil health improvement strategies  

After a soil health test assesses or scores the condition of the soil, the recommended 

options for improving the soil health constraints may be considered (Moebius-Clune et al., 

2016). Alternative soil management practices should be implemented gradually and with careful 

monitoring to adjust to the characteristics of the land and ideally with the assistance of a soil 

specialist (Moebius-Clune et al., 2016). Noticing issues with soil in the early stages of 

transitioning the land with new soil health goals can help to keep the approaches relevant to the 

soil problems and to avoid expensive crop failures. Four common strategies used to improve soil 

health are: reducing tillage intensity, crop rotations, cover cropping or inter-seeding, and adding 

inoculants or amendments such as organic matter (Moebius-Clune et al., 2016). While there are 
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endless combinations of options and outcomes when using these concepts, incorporation of these 

techniques can reduce the disturbance to the soil biotic communities, increase species diversity 

and disease resistance, improve nutrient cycling, boost the soil organic matter, and improve soil 

structure. 

Optimizing soil carbon sequestration to improve soil health and climate change mitigation 

By carefully tracking soil health test changes along with specific farm practices, soil 

researchers could draw more accurate correlations between soil health and carbon sequestration 

potential. Sequestration varies across soil types and regional variables regarding SOM content 

and carbon storage which contribute to climate change mitigation. As a result, farmers could 

tailor their soil management practices to optimize soil health as well as climate change mitigation 

by building SOM. Soil health improvement and soil carbon sequestration may be optimized by 

similar processes, however these have not been clearly identified for the soils unique to Hawaiʻi. 

Soil practices in other regions shown to support soil carbon sequestration are 1) working the soil 

less, for example with no-till methods 2) keeping the soil covered with vegetation rather than 

bare 3) planting intermediate crops, row intercrops, and grass strips 4) creating field hedges 5) 

optimizing pasture management such as longer grazing periods and 6) restoring degraded soils 

(Minasny et al., 2017). Additionally, soil types are known to have varying potentials to sequester 

soil carbon, with certain tropical soils existing on the higher end of soil carbon sequestration 

potential (Jackson et al., 2017).  Based on the soil types and practices we know to impact both 

soil health and soil carbon sequestration potential, it is expected that conducting soil health 

testing across Hawaiʻi’s various land management could guide the restoration of soil health and 

contribute to climate change mitigation. 
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1.6 Social perspectives of soil health 

Relevance of soil health to farmers 

 A soil health test can improve the outcome of agricultural efforts and benefit the 

surrounding environment, however, it is unknown if such a tool is being utilized in Hawaiʻi or 

how it is used by farmers to impact management decisions. Soil health testing assesses the 

quality of a soil ecosystem in relation to various land use goals. Ideally, growers can turn to these 

assessments so that they have effective overall planning for their soil, can identify constraints, 

monitor change, and measure progress (Moebius-Clune et al., 2016). Since the methods of 

measuring soil fertility are well developed in respect to crop production outcomes, 

fertility/nutrient tests are currently more widely adopted than a soil health test. However, while 

quite useful when used correctly, only a quarter of American farmers are testing for soil 

fertility/nutrients, and for those that are, they typically lack the necessary resources to interpret 

their soil tests and apply the information to their management practices (Lobry de Bruyn and 

Andrews, 2016).  

Soil health improvement is a slow process and accurately recording change in relevant 

indicators is crucial to see the impact of management practices over time. Since these changes in 

soil health happen at the human time scale, particularly in degraded soils, it is ideal that soil tests 

be used regularly as a ‘decision aid’ for long term soil health planning (Lobry de Bruyn and 

Andrews, 2016). A farmer using a Hawaiʻi soil health index can actively assess the effectiveness 

of management practices (Figure 1.2). Used regularly, a location-specific soil health test should 

accurately give a farmer answers to questions such as “did the implemented farming practice 

improve, maintain, or degrade the condition of the soil?” The recommendations for restoring soil 
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health are especially important for many developing regions that have become degraded. In some 

areas that are particularly isolated with limited resources for agriculture, soil health improvement 

strategies such as adding organic matter and rotating crops are realistic options to ‘kick-start’ 

low-fertility or degraded systems (Kibblewhite et al., 2007).  

 

Figure 1.2 An example of how results from a developed Hawaiʻi soil health index can be used by a 

farmer over time to track soil health after a management change, where the range of values are 0-1 with 

one being the healthiest. Scores for the index are generated from measured physical, chemical, and 

biological soil parameters.  

 

 

Understanding farmer perceptions 

In Hawaiʻi, it is unknown how soil health or fertility testing is being utilized among 

farmers. Due to lack of available data, the reasons why some farmers may not be using soil 

testing such as cost, analysis time, or uncertainty in the applicability to their management are 

unrecognized. For this reason, there is a gap of knowledge as to how to best provide soil testing 

resources and boost farmer engagement. Further research should attempt to identify user 
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participation as well as applications of soil test information to better support farmer goals as well 

as expand available soil data in the state. 

Successful efforts in evaluating human thought processes regarding belief systems and 

related behaviors holds the key to unlocking existing barriers of communication between farmers 

and researchers, extension workers, and policy makers. Regarding the Theory of Planned 

Behavior postulated by Ajzen (1991), farmers may have the intention to sustain soil health on 

their land, but the lack of appropriate resources can introduce behavioral controls and alter the 

intended behavior of a farmer, such as diminished efforts to utilize soil health building practices 

due to poor soil monitoring resources (Bhattacherjee, 2012). After addressing issues that impact 

farmer interest in long-term land management plans such as land ownership and lease length, 

understanding the perception of soil health testing by a farmer is arguably one of the most crucial 

aspects to consider when attempting to implement a new soil health index with the goal of 

improving long-term health of soils and conservation planning for land managers. The process of 

cognitive mapping, involving a series of questions to assign quantitative values to an individual’s 

perceptions, is one effective way of evaluating the gaps of communication between the scientific 

community and real-world application. Integration of the farmer perspectives and empirical 

knowledge can be particularly useful in low-input systems where resources are mostly derived 

locally (Mairura et al., 2007). With the creation of a mental map from on-farm participatory 

research, Hawaiʻi-specific soil knowledge could effectively assist in developing the most 

applicable and appropriate soil and crop management systems (Mairura et al., 2007).  
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Big picture pertinence of soil carbon 

In addition to improving soil directly for agriculture benefits, the ability to assess the 

health of a soil also facilitates land valuation and pricing of soil economically and gives soil 

health initiatives more momentum from a political standpoint (Moebius-Clune et al., 2016). 

Effective responses to the degradation of soils must emanate from policy change that pertain to 

soil management by land managers (Lobry de Bruyn and Andrews, 2016). Accurate testing with 

reproducible methods for soil health assessment is also of importance in ‘carbon farming,’ where 

a soil is managed for its ability to sequester carbon from the atmosphere as a strategy for climate 

change mitigation (Lal, 2004). Land being regulated for carbon farming can be considered in 

regions that support a carbon tax system, where carbon emissions can be offset by the carbon 

farming potential of certain soils in a carbon economy. The Hawaiʻi State Legislature has signed 

into law Act 33 in 2017, which established a Greenhouse Gas Sequestration Task Force whose 

mission is to improve soil health and promote carbon sequestration in Hawaiʻi’s agricultural, 

aquacultural, and agroforestry sectors (Office of Planning HI, 2018). Locally, this represents a 

critical step in Hawaiʻi’s efforts to adopt the goals of the Paris Climate Agreement and become a 

national role model. Additionally, it supports Hawaiʻi’s statewide commitment for clean energy, 

natural resource management, local food, smart sustainable communities, solid waste, and green 

education and workforce by 2030 (Office of Planning HI, 2018). Globally, initiatives such as ‘4 

per 1000 Soils for Food Security and Climate’ seek to increase soil carbon stocks by 0.4% per 

year to halt annual increases in atmospheric CO2 which contributes to global climate change 

(Minasny et al., 2017). Soil science applications such as these examples are gaining momentum 

worldwide, opening more avenues of opportunity and funding in applied science for real-world 

solutions.  
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CHAPTER 2. REFINING POTENTIAL SOIL HEALTH INDICATORS FOR HAWAI’I’S 

DIVERSE SOILS 

2.1 INTRODUCTION  

More than a century of intensive agriculture has left much of the formerly productive 

Hawaiian soil in a degraded state, which currently exists as a diverse landscape of various land 

use and management. Soil is an important natural resource and has the potential to provide food 

security, mitigate climate change, and protect coastal and inland ecosystems from further 

degradation if restored to a healthy, resilient state. To promote the restoration of soil in Hawaiʻi, 

it is vital that stewards of the land are able to observe changes in its health and develop a plan for 

integrating soil health management practices that are practical and efficient for the diversity of 

land use in Hawaiʻi. A method for quantitatively assessing a soil’s health to ensure prevention of 

further soil degradation, and to guide restoration developed specifically for tropical soils in 

Hawaiʻi’s natural and working landscapes, currently is lacking. 

Hawaiian soil diversity spans soil taxonomy, current land use, historical land use, and 

climates, making a one-size-fits-all soil health score not useful, nor suitable. Similar to human 

health, the term soil health is relative to the applied context, and so an applicable definition of 

soil health is defined as “the continued capacity of soil to function as a vital living ecosystem 

that sustains plants, animals and humans” (NRCS, 2018). Like human health, soil health cannot 

be confined to one trait but rather it encompasses physical, chemical, and biological traits as well 

as the historical background of land use. A critical step in the development of a reliable and 

robust soil health test for Hawai’i requires the selection of a suite of appropriate soil health 

indicators sensitive to change in soil management. 
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2.2 OBJECTIVES AND HYPOTHESES 

At present, there exists a list of potential soil health indicators for Hawaii, but it requires 

refinement and a robust test of its suitability for use across Hawaii’s diverse soils and landscapes 

(Figure 2.1). With the overall goal of developing a robust soil health index appropriate for 

Hawai’i, two objectives and hypotheses were developed:   

Objective 1: Identify patterns of land use and soil taxonomy that are associated to the changes in 

values of soil parameters and which could be indicative of soil health.  

Objective 2: Refine a large suite of potential soil health indicators and identify the most 

sensitive indicators of differences in soil characteristics related to soil health in Hawaiʻi, across 

diverse soils and land use classes that are also practical for farmers and researchers to use. 

 

Figure 2.1 A visual representation of the stages of developing a soil health index, showing Objective 2 as 

the process of refining potential indicators of soil health from global research to indicators refined for 

Hawaiʻi. 
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Hypothesis 1: Level of intensity of agricultural activity is a main driver of differences in 

indicators representing measurements related to soil health due to correlated loss of soil organic 

matter and soil life measurements. 

Hypothesis 2: Values of water stable aggregates, potentially mineralizable nitrogen, soil 

respiration, and bulk density are the strongest indicators of soil health, regarding their sensitivity 

to variability in soil management, due to their mechanistic relationship to organic matter content 

and soil life.  

2.3 METHODS 

2.3.1 Site selection 

Selected site locations from cropland, grassland, and forest covered a range of soil 

management, fertility, and soil taxonomy diversity to maximize variance in the data related to 

soil health (Table 2.1). Soil samples from six soil orders were collected from 22 sites across the 

islands of Oahu, Maui, and Molokai, consisting of Oxisols, Ultisols, Andisols, Inceptisols, 

Vertisols, and Mollisols (Appendix B). While there is a considerable agriculture presence on the 

island of Hawaiʻi, no soil samples were included from there because of current restrictions on 

unsterilized soil transport due to precautions of spreading the Rapid ʻŌhiʻa Death fungal 

pathogen. Groups of management selected for sampling came from sites that were initially 

classified as either organic and conventional cropland, forest, pasture, or unmanaged land. At 

least three types of management made up each soil order sampled with as many sites as possible 

from the same soil series within each order to reduce variability. Land managers of each site 

were asked to share information on site management and land history. Their responses provided 
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detail on irrigation, tillage, pesticide use, vegetation cover, fertilizer, current soil management 

practices, as well as details of management in short term and long term history (when available).  

Table 2.1 The 22 site locations from cropland, grassland, and forest that were selected to cover a range of 

soil management, fertility, and soil taxonomy diversity spanning six soil orders across the islands of 

Oahu, Maui, and Molokai. 

 
 

2.3.2 Soil collection 

At each of the 22 sites, three field repetitions (plots) were collected for a total of 66 soil 

samples. Each plot sample was comprised of homogenized soil taken at the depth of 0-15cm 

from five soil cores using methods adapted from the Cornell Soil Health Manual (Moebius-

Clune et al., 2016) and Doran et al. (1996) (Figure 2.2). The top surface of organic matter debris 

was carefully removed prior to soil coring. The 0-15cm depth zone of soil ecosystem is the most 



 30 

sensitive to changes in soil management and is therefore the chosen layer to measure sensitive 

indicators of soil health (Dick et al., 1996). Within the site, the three plots were at least 5 meters 

apart and selected to best characterize the property by judgement sampling, which takes into 

consideration potential differences in management practices and crop type (Dick et al., 1996). 

There was no strong evidence to expect high variance in the soil properties and so simple random 

sampling was sufficient in each 1 m2 plot (Figure 2.2) (Dick et al., 1996).  

Within each of the 66 plots, composite sampling was done by thoroughly mixing 

collected soils into one bulk sample per plot (Dick et al., 1996). Samples were transported back 

to storage facilities and frozen at -20°C as well as an air-dried portion (less than 10% moisture). 

Samples for phospholipid fatty acid testing were kept chilled, not frozen, and shipped 

immediately under refrigeration to the analysis facility.  

 

Figure 2.2 Field sampling design at each site for bulk soil collection, consisting of three plots at each site.   
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2.3.3 Soil analysis 

Aggregate stability 

Soils with higher water-stable aggregate stability have increased water infiltration, water 

storage, water and gas exchange, and resistance to erosion (Arai et al., 2014). Soil aggregates can 

store and protect organic carbon from being lost from the soil as a physical protection 

mechanism from microbes as well as restricting the diffusion of oxygen and enzymes 

(Blankinship et al., 2016, Berhe et al., 2012). Aggregate stability was determined by measuring 

water-stable aggregates via the wet-sieving method using the Eijkelkamp apparatus (Giesbeek, 

Netherlands), for macro-aggregate and ‘mega-aggregates’ (0.25-2 mm and 2-4 mm, respectively) 

(Figure 2.3). Air-dried samples were used for all soil samples except for Andisols, which, due to 

the known irreversible damage done to soil properties once dried, were only dried enough so that 

they could pass without force for dry-sieving aggregate size classes. A 4g sample of the dry-

sieved soil aggregates was placed into a respective sieve size and wetted via capillary action for 

five minutes. The samples oscillated vertically (1.3 cm at 34 times/min) into 75 mL of distilled 

water for 10 minutes and then lifted out to briefly drain. Aggregates that are not water stable are 

collected in the water beneath the sieve and dried to 105°C and then weighed. Aggregates that 

are water stable remained on the sieve and were dispersed using 40 mL of a 2 g/L solution of 

either sodium hexametaphosphate (if soil pH is greater than 7) or sodium hydroxide (if soil pH is 

less than 7) and placed on a horizontal shaker table for 16 hours. After dispersion, the samples 

were again passed through their corresponding sieve size and water stable aggregates collected 

beneath the sieve, dried to 105°C, and weighed, with only rocks and organic matter remaining on 

the sieve. Samples with strong aggregates required mechanical dispersion by use of a rubber 
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policeman attached to a stir rod and pushed through the sieve. Final values of water stable 

aggregates in the two size classes was calculated by subtraction of the dispersant precipitate from 

the water-stable aggregate dry weight, divided by the total dry weight of aggregates added to the 

sieve. Values are reported as percent water-stable aggregates by size class.  

 

Figure 2.3 The air-dried soil aggregates of sizes 0.25-2 mm and 2-4 mm prior to wet-sieving. 

Bulk density 

Bulk density serves as a measure of the degree of soil compaction and hence potential 

restrictions upon root growth, as well as limitations in pore space for air and water to fill (Arshad 

et al., 1996). Density soil collections, conducted during field sampling, used a 5.4 cm diameter 

metal core cylinder with a volume of 68.7 cm3 to collect a soil column at 10 cm depth (Figure 

2.4). Cores were carefully inserted to insure minimal disturbance to obtain an uncompacted soil 

volume and the extracted soil volume was stored separately from the bulk soil collection. Bulk 
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density samples were dried to 105°C, weighed, and then sieved. Rocks greater than 2 mm in size 

were removed, weighed, and their volume was measured via water displacement. Rock weights 

and volumes were subtracted from the total bulk density volume and weight values. Bulk density 

values are reported as g/cm3.  

 

Figure 2.4 Bulk density core carefully sampled at a depth of 10 cm.  

Texture  

Soil texture provides information on soil structure regarding rates of water infiltration, 

available pore space, and can also relate to soil fertility. Soil texture is an intrinsic soil property 

that is not affected by management. Texture values were obtained from the available National 

Resources Conservation Service (NRCS) online soil survey reports (Soil Survey Staff, NRCS-

USDA, 2018) for each soil series. Texture values were reported in percent sand, silt, and clay.  
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Soil hardness 

Soil hardness is the capacity of the soil to resist penetration by a rigid object and relates 

to the compactness of a soil as well as the cementing features of its mineral structure (Arshad et 

al., 1996). Compaction reduces the soil’s ability to support root growth and reduces water 

infiltration, increasing the potential for erosion. A Fieldscout SC 900 (Spectrum Technologies, 

Aurora, IL) soil compaction meter (penetrometer) that applies vertical manual force was used to 

measure and record resistance in the field. The penetrometer was used at each of the 66 plots and 

values in kPa were recorded at each 2.5 cm increment to a maximum potential depth of 30 cm. 

At sites with high soil hardness, values were recorded until the probe could no longer move 

through the soil profile. Values for soil hardness are reported at the surface (0 cm) and at plow 

depth (15 cm). For soils that did not allow the probe to reach 15 cm depth due to excessive 

hardness, the value 5000 kPa was used to represent the maximum pressure observed across sites. 

Penetration resistance classes range from <10-8000 kPa and respectively represent soil with 

extremely low to extremely high soil hardness (Arshad et al., 1996). 

Total organic C and N 

High organic matter in the soil is known to correlate with various critical soil functions as 

well as increase a soil’s resilience to drought and extreme rainfall and also may reduce nutrient 

inputs (Bot and Benites, 2005, Awale and Chatterjee, 2017). The total organic C measurement is 

highly correlated to organic matter content (Moebius- Clune et al., 2016). The Costech Elemental 

Analyzer (Costech Analytical Technologies, Inc., Valencia, CA, USA) provides the percent total 

carbon and nitrogen found in each sample. A soil subsample from each plot was dried to 105°C, 

ground to pass through a 250 μm sieve and acidified as necessary in an airtight container with 
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hydrochloric acid and fumigated for four hours to remove inorganic carbon and samples were 

then measured in the elemental analyzer. The acidification stage is necessary for soils that have 

been limed to increase pH as well as those soils with parent material rich in calcium carbonate 

(coral). Values for total organic carbon and total nitrogen are reported as a percent of the dry soil 

mass.  

pH  

Soil pH is regarded as a standard measurement of soil because of its influence in essential 

nutrient availability and plant toxicity (Karlen et al., 2003a). Typically, a pH range of 6.0-7.0 is 

considered ideal, however, this is crop and ecosystem dependent. Soil pH values were obtained 

using a 2:1 method in water with a SympHony SB70P meter. The air-dried equivalent of 10 g 

soil was mixed into 20 mL distilled water, mixed on a Vortex shaker for 10 seconds, and allowed 

to sit for 30 minutes prior to measurement of the soil solution.  

Extractable nutrients calcium, sodium, potassium, and phosphorus 

Base cations and available phosphorus impact soil fertility and salinity, and ideal 

concentrations depend on crop or plant cover. A Mehlich III extraction measured calcium, 

sodium, potassium (Ca+2, Na+, K+) and ortho-phosphate using 2.5 g of air-dried soil. The soil 

was weighed into 50 mL centrifuge tubes and 25 mL of Mehlich III was pipetted into each 

sample. Each sample shook for five minutes on a reciprocal shaker and then filtered through 

Whatman No. 2 filter paper. The extractant was immediately stored in a freezer, and thawed to 

room temperature before analysis. Ca+2, Na+, and K+ were analyzed using the flame photometry 

method, while ortho-phosphate was analyzed on a LACHAT 8500 Series 2 (Hach Company, 
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Loveland, CO, USA) using the flow-injection colorimetric method read at 880 nm. Reported 

values for extractable nutrients are in mg/Kg soil.  

Hydroxylamine hydrochloride extractable Fe/Al 

The hydroxylamine hydrochloride extraction is used to remove amorphous minerals from 

soil by bringing them into solution, which is most meaningful to measure in soils such as 

Andisols composed of poorly and non-crystalline minerals (Chao and Zhou, 1983). This test is 

commonly used in formula with other metal element extractions for final parameter values that 

assist in taxonomic classifications of soils as well as carbon sequestration potential (Rasmussen 

et al., 2018). Using the procedure adapted from Carter and Gregorich (2008), air-dried samples 

were ground to pass through 150 µm mesh sieve, while Andisol samples were not dried and 

therefore were also not ground, due to the known irreversible damage done to soil properties 

once dried. A 0.1g soil sample was weighed into a centrifuge tube as well as 25 mL of 0.25M 

hydroxylamine hydrochloride and 0.25 M hydrochloric acid solution. Samples were placed on a 

shaker table for 16 hours and then centrifuged for 20 minutes at 1500 rpm. Next, the sample 

supernatant was filtered through Whatman 52 filter paper. The final filtered sample was analyzed 

by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) to measure the 

concentration of elements iron, aluminum, and silica with values reported in g/kg soil. 

Citrate dithionite extractable Fe/Al 

Citrate dithionite extractable elements are used most commonly to identify the amount of 

“free” secondary crystalline and short range order iron oxyhydroxides in soil by removing 

organically-complexed and amorphous iron, aluminum and silica as well as iron and aluminum 
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oxides and bringing them into solution (Loeppert and Inskeep, 1996). The reducing environment 

created by the dithionite dissolves metallic oxides while the sodium citrate chelates the dissolved 

metals and buffers the pH to near 7 and prevents compound precipitation (Courchesne and 

Turmel, 2008). This test is commonly used in formula with other metal element extractions for 

final parameter values that assist in taxonomic classifications of soils as well as carbon 

sequestration potential (Rasmussen et al., 2018). Air-dried samples were ground to pass through 

150 µm mesh sieve, while Andisol samples were not dried and therefore were also not ground, 

due to the known irreversible damage done to soil properties once dried. A 0.5 g soil sample, 6g 

sodium citrate 0.5 g sodium dithionite, and 30 mL deionized water are added to a centrifuge tube 

and shaken for 15 seconds before opening to ventilate and then placed on a reciprocating shaker 

for 16 hours. Next, 12 µl of polyacrylamide flocculating agent was added to each sample after 

transfer to a volumetric flask, mixed for 15 seconds and diluted to a 50 mL volume with 

deionized water. Each sample was poured back into centrifuge tube, and centrifuged at 1800 rpm 

for 30 minutes prior to filtering through Whatman 52 filter paper. Final filtered samples were 

analyzed by ICP-AES to measure the concentration of elements iron, aluminum, and silica with 

values reported in g/kg soil. 

Sodium pyrophosphate extractable Fe/Al 

The sodium pyrophosphate extraction is used to remove the organically-bound iron and 

aluminum, which often controls aluminum in surface horizons of mineral soils and O-horizons of 

organic matter-rich soils (Bloom et al., 1979, Walker et al., 1990). This test is commonly used in 

formula with other metal element extractions for final parameter values that assist in taxonomic 

classifications of soils as well as carbon sequestration potential (Rasmussen et al., 2018). Using 
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the procedure from Carter and Gregorich (2008), air-dried samples were ground to pass through 

150 µm mesh sieve, while Andisol samples were not dried and therefore were also not ground, 

due to the known irreversible damage done to soil properties once dried. A 0.025 g sample of 

soil was weighed into a centrifuge tube and 25 mL of 0.1 M sodium pyrophosphate was pipetted 

into each sample and then placed on shaker table for 16 hours and centrifuged for 15 minutes at 

20,000 G. Each sample was filtered through Whatman 52 filter paper, and the collected 

supernatant sample was analyzed by ICP-AES to measure the concentration of elements iron, 

aluminum, and silica with values reported in g/kg soil. 

Hot water extractable C and N 

Water extractable carbon and nitrogen measurements reflect changes in the labile pools 

of soil organic matter caused by management practices (Hamkalo and Bedernichek, 2014). 

Extractable carbon is associated with aggregate formation as well as a reserve of nutrients and 

energy for plants and microbes, while extractable nitrogen is readily mineralizable nitrogen that 

impacts plant growth (Hamkalo and Bedernichek, 2014, St. Luce et al., 2016). Hot water 

extractable carbon is associated with biological activity as the hot water lyses microbe cells and 

releases biomass components, which relates well with microbial biomass C (Sparling et al., 

1998, Ghani et al., 2003). Using methods adapted from Ghani et al. (2003), modified from 

Haynes and Francis (1993), a 3g oven-dried equivalent sample of air-dried soil was placed into 

30 mL of room temperature distilled water and placed on horizontal shaker table for 30 minutes, 

centrifuged at 3000 rpm for 20 minutes and then filtered through a pre-leached 45 μm acetate 

cellulose syringe filter. The collected supernatant was acidified with 75 μL of 1M HCl before 

being stored frozen until analysis as the “cold water extraction.” Another 30 mL distilled water, 
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corrected by weight for any water still remaining in the soil pellet, was added to the sample and 

shaken on a vortex shaker for 10 seconds, and placed into hot water bath at 80°C for 16 hours. 

Tubes were then vigorously shaken for 10 seconds to re-suspend the hot-water extractable 

carbon and nitrogen, centrifuged for 20 minutes at 3000 rpm and again filtered through a pre-

leached 45 μm acetate cellulose syringe filter and stored frozen until analysis as the “hot water 

extraction.” Hot and cold water samples were thawed to room temperature and analyzed for total 

organic carbon and nitrogen using the Total Organic Carbon (TOC) Analyzer model 5000A 

(Shimadzu Corporation, Kyoto, Japan). Dissolved organic carbon is the sum of cold and hot 

extractable values. Results are reported in μg C/g soil and μg N/g soil. Hot water extractable 

inorganic nitrogen was measured for ammonium and nitrate on a LACHAT 8500 Series 2 (Hach 

Company, Loveland, CO, USA) using the flow-injection colorimetric method read at 660nm for 

ammonium and 520 for nitrate. 

Water holding capacity 

A soil’s ability to hold water is vital for sustained plant growth and supporting microbial 

life and is often correlated to soil texture, amount of soil organic matter, as well as bulk density 

(Brady and Weil, 2008). Higher values of water holding capacity are ideal for a healthy soil 

ecosystem. Using an adapted protocol from Awale and Chatterjee (2015), the air-dried 

equivalent of 10 g oven-dried soil was added to a 50 mL cylinder, with an attached Whatman 

#54 filter on the bottom acting to contain the soil placed into the tube. Tubes were lowered into 

water for capillary action to saturate the soil column. Once all soils had reached saturation, they 

were drained for one hour and reweighed to calculate their full water holding capacity. Water 

holding capacity was calculated as the weight of the water retained in the soil divided by the 
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oven dry weight of the soil, reported in percent.  

24-hour soil respiration (CO2 burst) 

Soil respiration methods measure the metabolic activity of the microbial communities in 

the soil, an important aspect of soil fertility (Haney et al., 2008). Greater respiration of the 

microbes in soil is indicative of greater activity of the soil microbes present which contribute to 

organic matter decomposition and nutrient cycling (Haney et al., 2008). A 24 hour CO2 release 

highly correlates with other methods of soil respiration, such as microbial biomass, yet is a 

simpler and easier to use method than older test methods (Haney et al., 2008). To measure soil 

respiration, a 25 g oven-dry equivalent sample of air-dried soil was rewetted to 60% water 

holding capacity, placed into a 610 mL airtight container at a controlled temperature of 25°C for 

24 hours, and the carbon dioxide respiration emissions were captured and measured in a 

PerkinElmer Clarus 580 GC (PerkinElmer, Waltham, MA, USA). Final reported values were 

converted into µg C/g soil. 

Carbon mineralization incubation  

The availability of carbon to be metabolized by soil microbes and released as CO2 is 

regulated by various physical, chemical, and biological soil properties. The labile C, or rapid 

turnover C, can be a sensitive measurement of changes in soil organic carbon stocks that 

influence soil health (Awale et al., 2017). Soils prepared for the 1-day soil respiration test (see 

soil respiration methods above) were left open to the atmosphere for three days to freely 

exchange atmospheric gas, capped and allowed to continue the incubation at 25°C for a period of 

119 days (4 months). The containers were sampled for CO2 at different time points depending on 
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the amount of CO2 emitted to avoid toxic levels of CO2 buildup within the container. Soils with 

high microbial activity were sampled 1-2 times a day for the first three months and then 3-4 

times per week near the end of the 119 days. These highly microbially active soils also 

underwent a reduction to ⅓ the original soil mass at 90 days. Less active soils were initially 

sampled 1-3 times a week and then once every two weeks up to day 119. Soils were moisture 

corrected to maintain the moisture content within 5% the original water content. The values were 

modeled in R at incubation days 1, 3, 7, 14, 30, 60, 90, 119 for carbon pool identification. Final 

reported values are the percent of total carbon that was mineralized and respired over 119 days as 

the closest estimate to a labile pool (cumulative gas concentrations were converted into a carbon 

mass and divided by total initial carbon mass). 

Microbial community - PLFA  

Phospholipid fatty acids (PLFA) are a key component of microbial cell membranes and 

analysis of PLFA provides a snapshot of microbial community structure representing the 

biological soil response to changes in land management (Zelles et al., 1995). Buyer’s high-

throughput method of analysis is chosen over other options representing microbe diversity 

because of its speed to produce results and because it is a reliable adaptation of older methods 

such as Bligh and Dyer’s (1959) extraction methods (Buyer et al. 2012). Refrigerated and never-

frozen soil samples were packed on dry ice and sent to an outsourced lab for PLFA analysis 

according to the extraction method of Buyer and Sasser (2012). Values reported for total PLFA 

(in pmol/g dry soil) are robust estimates of microbial biomass (Tunlid and White, 1992; Zelles et 

al., 1995). In addition to overall microbial biomass, the analysis produced estimates for the 
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following microbial groups; gram positive, gram negative, anaerobe, actinomycetes 

(Actinobacteria), methanobacter, fungi, and AM fungi. 

Enzyme extractions  

Nutrient cycling in soils relies not only on direct nutrient inputs, but also on the ability of 

soil enzymes to decompose organic matter and release nutrients into plant available forms. Soil 

enzymes are substrate-specific and during reaction with the substrate, release the corresponding 

product into the soil ecosystem (Alkorta et al., 2003).  Enzyme activity does not necessarily 

correlate with live soil microbes and can source from dead microbes, residues, and animals 

(Tabatabai, 1994). Hence, concentrations of soil enzymes can estimate long term microbial 

activity and respond to changes in soil management more quickly than many other indicators that 

slowly degrade such as total carbon loss (Dick et al., 1994). The enzyme β-glucosidase is 

important for recycling carbon compounds into energy for microbes and is a reliable predictor of 

organic matter decomposition (Alkorta et al., 2003). β-glucosaminidase is involved in both 

carbon and nitrogen mineralization while acid phosphatase is responsible for the recycling of 

phosphorus, both important cycles related to nutrient uptake by plants (Parham and Deng, 1999, 

Alkorta et al., 2003). β-glucosidase, β-glucosaminidase, and Acid phosphatase were separately 

extracted from each soil sample and each extraction followed protocols outlined in Tabatabai 

(1994), Parham and Deng (2000), and Acosta-Martinez and Tabatabai (2011), respectively. A 

pre-sieved (<2 mm) 0.5 g sample of air-dried soil was mixed with reagents and incubated at 

37°C for one hour. The reaction was then stopped and the samples were filtered. The filtered 

supernatant was measured for intensity of yellow color in a 6405 UV/Vis Spectrophotometer 

(Jenway, Staffordshire, UK) and results are reported in μg p-nitrophenol/g soil.  
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Potentially mineralizable N 

The conversion of nitrogen from complex organic forms into ammonium (mineralization) 

is a biological process in which nitrogen becomes plant available. Nitrogen in the soil stored in 

various forms of organic matter, such as crop residue, is not all plant available. Instead, nitrogen 

is mostly in the form of complex organic molecules such as proteins, which are too large for 

plant uptake (Moebius-Clune et al., 2016). Various microbial groups oxidize these molecules 

into ammonium and nitrate by mineralization and nitrification which are then in plant available 

forms (Moebius-Clune et al., 2016). Thus, measurement of nitrogen mineralization is an estimate 

of the capacity of the soil microbes to recycle nitrogen into plant available forms (Moebius-

Clune et al., 2016). The potentially mineralizable nitrogen protocol used is adapted from the 

methods of Drinkwater et al. in a seven-day anaerobic incubation, as a more practical 

measurement than long incubation methods (1996). 

Soil samples undergo a pre-measurement as a baseline of ammonium present in the soil 

as well as a post-incubation measurement to determine the amount of ammonium mineralized. 

For each soil sample, two 8 g samples of sieved (2 mm) field moist soil (thawed from frozen) 

were placed into 50 mL centrifuge tubes labeled as pre and post samples. After weighing, 40 mL 

of 2 M potassium chloride (KCl) was added to each pre tube, horizontally shaken on a shaker 

table for one hour, filtered through #42 Whatman paper, and the filtered supernatant was frozen 

until analysis. The post sample for each soil was prepared for incubation by pipetting 10 mL of 

distilled water into each tube and was placed in a dark incubation chamber at 30°C for seven 

days. After incubation, 30 mL of 2.67 M KCl solution was added to each post tube (to equal a 40 

mL solution of 2 M KCl), horizontally shaken on a shaker table for one hour, filtered through 
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#42 Whatman paper, and the filtered supernatant was frozen until analysis. All samples were 

analyzed for ammonium using a LACHAT 8500 series 2 using the flow-injection colorimetric 

method read at 660 nm. The net ammonium mineralization or immobilization is equal to the 

ammonium value after the incubation period minus the ammonium value of the pre-incubation, 

and reported as mg NH4-N/kg.  

Microbial functional diversity - Amplicon sequencing  

Microbial functional diversity data provides a snapshot of the structure and metagenomic 

details of soil microbial communities, which fulfill many vital roles in soil health such as nutrient 

mobilization, immobilization, organic matter decomposition, and gas exchange (Soliman et al., 

2017). Amplicon sequencing requires soil samples to be stored frozen until processing and 

processed as soon as possible to best represent a snapshot of the microbial populations. DNA 

was extracted from 10 g of soil per sample and prepared for polymerase chain reaction (PCR). 

The final amplified products are sequenced and provide data on the taxonomic diversity as well 

as abundance of microbes in each sample (Nguyen et al., 2015). Soils were preserved and 

prepared for amplicon sequencing, however, due to the time intensive nature of this indicator 

test, the data was not suitable for a reasonable soil health test and the completed data will be 

analyzed at a later time when it is made available. The process will sequence bacterial 16, fungal 

ITS, and eukaryotic 18S (for protists and nematodes) genes. 

Arthropod richness and diversity  

Arthropod populations in soils are a relatively simple bio-indicator assessment of soil 

life. Invertebrate communities are highly sensitive to disturbance due to their complex 
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interactions with other soil life and their relative immobility from their soil environment (Menta, 

2012). To determine arthropod richness and diversity, approximately 100 g of fresh soil 

(collected that day) was placed into the top chamber of a Berlese funnel and placed under a heat 

source. The soil sample’s live arthropods migrate down away from the heat through a mesh into 

ethanol, where they are preserved to be counted and identified under a microscope to determine 

the arthropod richness and diversity.  

2.3.4 Data analysis 

Principal Component Analysis (PCA) 

Data was prepared for Principal Component Analysis (PCA) in PC-ORD version 7 (Wild 

Blueberry Media LLC, 2018), a multivariate analysis program originally designed for ecologists 

(McCune and Mefford, 2018). PCA was selected because it is an ideal tool for reducing many 

variables of a dataset into a smaller set of summary variables. The procedure identifies patterns 

of redundancy, which meets the primary objective to reduce a large number of soil health 

indicators to a subset of robust and sensitive indicators as a MDS (Appendix E) (Peck, 2016, 

Andrews et al., 2002b). 

As described by Peck (2016), PCA operates with a linear modeling approach to reduce 

many responses down to a group of best fit predictor variables. The process of PCA and the 

options selected can be summarized in the following steps: 1) calculation of a cross products 

matrix among all variables using a Pearson’s correlation, and within it, Euclidean geometry and 

linear algebra to identify strong linear trends, 2) construction of the best linear fit through the 

multidimensional space created by each variable, where each sample point exists, creating axes 
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of ordination by a form of matrix algebra called ‘eigenanalysis,’ 3) use of the eigenanalysis 

process to calculate eigenvalues (latent roots of the best fit equations) and eigenvectors (the 

linear combination coefficients on each axis), 4) construction of an eigenvector matrix scaled to 

its standard deviation, whose values are equivalent to the correlation coefficients between 

variables and axes, and finally, 5) eigenvalues in a randomization test report the number of 

statistically significant axes of analysis.  

The final analysis from PCA ordination provides a list of axes by diminishing importance 

constructed from the redundant patterns of variable data, and the correlation coefficients of each 

variable to the dominant axes. The sum of the eigenvalues equals the number of variables 

provided, and the axis with the highest eigenvalue is the dominant axis. As a result, each axis 

explains a known portion of variance in the data and each has associated strengths to the 

variables tested (eigenvectors). To ensure a robust analysis, there should be more sample units 

than variables, and variables should be normally distributed with few zeros and low skewness. 

Data for the PCA ordination is derived from quantitative values provided in a main matrix, and 

categorical data in a secondary matrix can overlay the ordination as explanatory environmental 

data. For example, pH is a variable in the main matrix while the soil order of the sample is a 

secondary matrix variable.  

Data preparation for PCA 

All untransformed data (30 soil indicators) was run in a PCA for initial assessment of 

data distribution and corrected for skewness as needed. Uneven distribution of data in the 2D 

output suggested problematic skewness and the need to transform data which was confirmed by 

assessing distribution tables of each variable for non-normality (Appendix C). Outliers were 
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assessed and noted at this stage and a test of skewness for each variable was performed in R. The 

data was considered highly skewed if a skewness value was above +1 or below -1, and 

moderately skewed if between +0.5 to -0.5. The data was symmetric and considered normally 

distributed if the skewness value was zero. Normal distributions are ideal for accurate PCA 

results and those that are highly skewed require transformation. Histograms visually presented 

the type of distribution for variables whose skewness was greater than |1| to guide the selection 

of transformation. Transformations of log, cube root, and square root were tested on each highly 

skewed variable since all were either positively or negatively skewed with single peaks. 

Transformed variables were rerun for skewness and the transformation with the lowest skewness 

value was selected as the best possible transformation (Table 2.2). A new PCA using 

transformed variables showed an improved graphical display regarding spatial distribution of 

plots and outlier assessment (Appendix C). The previous outliers were no longer present and the 

current plots flagged as outliers (exceeding two standard deviations) did not appear as visual 

outliers nor were clustered, and were kept in the dataset. 
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Table 2.2 A comparative list of skewness values among selected potential soil health indicators, 

untransformed and transformed to improve data normality, and the transformation technique used for 

maximum skewness improvement (if applicable).  
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Verification of data balance and impact of potential outliers 

Assessment of variable balance in PCA ordination compared various layers of 

explanatory data with parameters in a priori groupings consisting of biological, chemical, and 

physical soil properties (Stefanoski et al., 2016). Datasets in PCA can potentially be biased and 

skewed by variable selection and so were reviewed before beginning analysis. Values from the 

30 measurable parameters served as the main dataset for PCA ordination and balance in groups 

was confirmed so that chemical, physical, and biological groups were all well represented in the 

list of included parameters. Overlays of supplemental environmental data operated as the second 

matrix and included land cover, historical disturbance, soil order, and soil series. Potential outlier 

sites and groups (e.g., the unique group of Inceptisols at Site R) were individually removed and 

re-added to determine their influence on the PCA and assess any significant impact on results. 

Second matrix overlays were used to identify potential issues with the distributions of data 

balance or flag potential errors in data manipulation.  

Reduction of potential indicators 

After PCA, the potential indicators were further assessed and reduced according to a list 

of variable reduction techniques. Quantitative and qualitative removal of variables was 

determined using the following criteria adapted from methods proposed by Karlen et al. (2001) 

and Andrews et al., (2002b): 1) “strong” sensitivity to data variance, where indicators with less 

than 68% correlation to the PCA axis of greatest variance explained are removed (Taylor, 1990), 

2) robust practicality of measurement to process in a routine soil health test, where the indicator 

is removed if field measurements require expert skill to collect, or excessive labor or cost to 

perform, and lastly, 3) limited multicollinearity with other variables of similar critical soil 
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function, where practicality between indicators is assessed if  R² value between them is greater 

than 0.80. 

2.4 RESULTS & DISCUSSIONS 

2.4.1 Excluded indicators 

Carbon pools, microbial functional diversity, and arthropod populations were not 

included in the final data analysis. Values from the carbon mineralization incubation were 

modeled in R at incubation days 1, 3, 7, 14, 30, 60, 90, 119 for carbon pool identification. 

However, many soils with high microbial activity and carbon content did not develop the 

required pool inflection points during the four-month incubation period, and so accurately 

modeled pools could not be determined due to insufficient data. The microbial functional 

diversity test is time and labor intensive, and so samples were unable to be processed for 

amplicon sequencing during the allotted data collection period in time to be included for 

analysis. The test for arthropod richness and diversity using Berlese funnels was also excluded 

from consideration for a soil health test. Due to inter-island travel and lack of facilities on site for 

the funnel setup, this method was only conducted for samples collected on Oahu. The Berlese 

funnel did not produce a reliable invertebrate count data, as the cropland soil’s high friability led 

to incompatibility with the experimental equipment with too much soil falling into the ethanol 

solution. The arthropod indicator test was not implemented into the analysis due to the 

significant gaps in sample data, and not recommended for future use due to complications with 

soil friability. Final variables confirmed to be suitable in PCA showed balance among biological, 

physical, and chemical groups (Table 2.3) (Appendix E).  
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Table 2.3 The list of potential soil health indicators to be used for PCA in their corresponding soil 

characteristic groups regarding a measurement of a primarily physical, chemical, or biological soil 

characteristic.  

 

2.4.2 Expanding site description groups  

Land use groups 

At the outset, four land use categories were established (organic cropland, conventional 

cropland, grassland, and forest). These groups were selected to capture the diversity of soil 

function in Hawaiʻi, and historic and current site management data from land managers captured 

land use history. However, to more accurately describe similarities and differences relating to 

land use, “organic” and “conventional” groups were placed as sub-categories under broader land 

cover described as “cropland.” The land covers “grassland” and “forest” remained as is for a 

total of three land cover groups. However, the site characteristics within forest and grassland 
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land cover groups varied greatly, giving rise to the need for further division of forest and 

grassland land cover groups into management subcategorization as well. 

 

Subcategorization of land cover groups using current and historic management 

 

Using questionnaire responses from current land managers, site descriptions were 

compiled to supplement the original classification of sampled sites to include six management 

subgroups beneath cropland, forest, and grassland categories. Site data for subcategorization was 

limited to information that was available at all sites and included current management practices 

(tillage, addition of pesticides/herbicides/fertilizers, type of agriculture or vegetation) and time 

under the current management, historic practices (tillage, addition of 

pesticides/herbicides/fertilizers, type of agriculture or vegetation) and estimated time frame of 

that management, and land use transformations pertaining to significant land disturbance, 

restoration, or ownership.  

 

Some of the forest and grassland locations included sites with a common history of 

previous intensive agriculture, while others had been under protective or long term management 

without a history of intensive agriculture. The grassland and forest sites with a history of 

previous agriculture were unlike the undisturbed forests, and were renamed to the more 

descriptive title ‘unmanaged previous intensive agricultural land,’ or UPIAL. Some sites in the 

forest category were further divided by dominant forest species covers. Forest sites were sub-

categorized as either UPIAL, protected non-native, or protected native. Grasslands were also 
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sub-categorized as UPIAL or pasture with no known history of disturbance. Sites were assigned 

accordingly to the best fit subcategorization (Table 2.4).   

 

Table 2.4 Land cover split sites clearly into either cropland, grassland, or forest and sites were further 

divided into their descriptive management groups using available current and historic site data.  

Land Cover Current Management Description 

Cropland Organic No use of chemical pesticides, herbicides, 

or synthetic fertilizers 

Conventional  Use of chemical pesticides, herbicides, 

and synthetic fertilizers 

Grassland 

 

Unmanaged grassland from 

previous intensive 

agricultural land (UPIAL) 

Previously agriculture-intense land with 

no current management system, grassland 

as dominate cover 

Pasture Managed with pasture grasses for rearing 

livestock 

Forest 

 

Unmanaged grassland from 

previous intensive 

agricultural land (UPIAL) 

Previously agriculture-intense land with 

no current management system, forest as 

dominate cover, and less than 100 years 

no disturbance  

Protected, non-native  Managed to preserve long-term non-

native forest, greater than 100 years no 

disturbance 

Protected, native Managed to preserve long-term native 

forest, greater than 100 years no 

disturbance 

 

The overall reconstruction of site groupings produced a hierarchy of labeling that painted 

a more complete picture of what had happened over time in each group in addition to current 

management. Land cover split sites clearly into either cropland, grassland, or forest and were 

further divided into their descriptive management groups (Figure 2.5).  
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Figure 2.5 Images from field sites in each category of land management, separated by land cover (forest, 

grassland, or cropland). Unmanaged previous intensive agriculture land is represented by the acronym 

‘UPIAL’.  
 

Disturbance level as an additional categorization of sites 

After accounting for the importance of previous land use on the soil variability, an index 

for categorizing disturbance added another level of difference among sites. Each site’s level of 

disturbance was identified based on the available history. Level of disturbance was based upon 

the degree of physical disruption of the soil structure and ecosystem, such as tillage or 

compaction (Table 2.5). The sub-categorization of management and the creation of a disturbance 

layer were not utilized in the PCA ordination and hence had no impact on data variance, but 

rather, was used to identify patterns of change in sites using descriptive information provided by 

land managers.  
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Table 2.5 Assessment of level of disturbance for each study site is categorized based on the time frames 

described since the most recent soil disturbance, based on available history of land use.  

Level of 

Disturbance 

Description Example 

Low At least 50 years no disturbance  Forest with no cultivation 

history 

Medium Disturbed in the last 50 years, 

greater than 10 years no 

disturbance 

Unmanaged land that was 

previously in crop production 

20 years ago 

High Disturbed in the last 10 years, 

greater than 3 years no 

disturbance 

Pasture that was tilled 5 years 

ago and no disturbance since 

Very High Disturbed in last 3 years Currently tilled for seasonal 

crop production 

 

2.4.3 Site distributions and patterns in PCA 

Significant axes and variance extracted 

The PCA output determined four significant axes, which cumulatively explained 75% of 

the data variance (Table 2.6, Table 2.7). As the major axis, Axis 1 represents the greatest 

variability explained within the data (43%), in contrast to Axes 2, 3, and 4 (explaining 16%, 9%, 

and 7% of data variability, respectively) (Table 2.7). As a result of the exploratory nature of 

PCA, there are no clear rules of interpretation, however, many methods are discussed among 

PCA users. Typically, an axis percentage of variability explained above 60% is used to support 

deductions, however, this value is a guideline and the ordination can still be interpreted without 

reaching 60% with the assistance of environmental data patterns (Dr. JeriLynn Peck, personal 

communication, May 4, 2018). Axes representing less than 10% of data variability or those axes 
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with no clear associations to available second matrix groups are often regarded as only of 

nominal usefulness as a tool to explore trends and patterns. No such patterns were observed in 

the PCA ordination in relation to the 3rd and 4th axis (both less than 10%) and so are not 

graphically displayed in this analysis. 

Table 2.6 Randomization results from the PCA output are used to determine the number of significant 

axes for interpretation, with the first four axes considered significant (p-value < 0.05). 

 

Table 2.7 Variance extracted results report the percent of variance explained per axis as well as 

cumulatively. A cumulative total of 74.6% data variance is explained from the four significant axes 

(Table 2.6).  
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The PCA indicator vectors showed the most loading in a negative correlation to Axis 1, 

and a smaller group of indicators evenly loading positively and negatively for Axis 2 (Figure 

2.6). The top five strongest indicators in each Axis direction (if available) showing greater than 

35% correlation to that axis (representing at least a moderate correlation) are shown in Figure 2.6 

(Taylor, 1990). Values that strongly pull data to the left of Axis 1 are those closely tied to soil 

carbon and life (e.g., PLFA, % total carbon, soil respiration). Some inherent indicators such as 

texture and iron oxides pull data to the right on Axis 1, as well as bulk density increasing in this 

opposite direction of increased life and carbon. Strong indicators pulling data upwards are 

nutrient-related, while mostly inherent and structure-related indicators separating some data 

downwards.  

 

Figure 2.6 PCA ordination of all plots and all potential soil health indicators displaying the top five most 

correlated variables to each axis (> |0.35| correlation), for both positive and negative correlations.  
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PCA with land cover 

 

The three land cover groups showed a trend of clear separation when overlaid as the 

second matrix data, with considerable overlap between forest and pasture, and pasture and 

cropland, and no overlap between forest and cropland (Figure 2.7). Figure 2.8 demonstrates the 

remaining overlap between land cover groups in 3D space. Generally, sites transition 

horizontally into these groups in alignment with major Axis 1. However, within each land cover 

group there is still high variability as expected. Examining subcategorization groups of land use 

next allows for greater explanation of such differences.   
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Figure 2.7 PCA ordination of all plots and potential soil health indicators with the overlay of land cover 

to group plots by color.  
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Figure 2.8 3D graphs of PCA with the overlay of land cover, sites of the same land cover (by color) 

generally cluster together, however, there is still considerable overlap in the groups suggesting that land 

cover does not sufficiently describe shifts in second matrix groupings.  

 

PCA with management 

Within the hierarchy of site grouping under land cover, six additional management 

options equate to a total of seven groups based on land cover and management and again visually 

show shifts in management happening primarily along Axis 1 (Figure 2.9). In 3D space, the 

overlap of sites is clearly reduced for group clusters (Figure 2.10). Plots in the pristine native 

forest (52-54) and other forest sites were associated in the direction with higher values of total 
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percent organic carbon, as well as various indicators of soil life, while the sites under current 

conventional agriculture appear on the opposite end of Axis 1 with lower carbon and soil life. 

The overlay of management helps in understanding differences within forest and cropland sites, 

but there is still a large amount of unexplained variability within pasture and each cropland 

group (Figure 2.9). Because management alone does not explain all site differences, other 

environmental overlays are examined to understand some overlapping areas.  
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Figure 2.9 PCA ordination of all plots and potential soil health indicators with the overlay of land cover 

and management to group plots by color.  
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Figure 2.10 3D graphs of PCA with the overlay of land management and the site groups demonstrating 

clearer delineation of spatial similarity than using land cover alone.  
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PCA with soil disturbance 

The intensity of soil disturbance ranging from low to very high provides information to 

the spatial segregation of some groups with high variability. In the pasture group, the land 

disturbance second matrix overlay now breaks those sites into regions of low and high 

disturbance (Figure 2.11). Due to standard practices of cropland agriculture, all sites under 

cropland land cover demonstrate very high soil disturbance and so the overlay offers little extra 

information as to the reason for high variability within those organic and conventional sites.  
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Figure 2.11 PCA ordination of all plots and potential soil health indicators with the overlay of intensity 

of soil disturbance to group plots by color.  



 67 

 

PCA with soil order and series 

In the final overlay option for second matrix data, taxonomy clearly shows distinct 

impact upon the site distributions as well. On the level of soil order, groups of sites of the same 

order cluster into similar spatial regions, demonstrating the importance and impact upon values 

of measurable indicators related to soil health and independent of management (Figure 2.12). 

However, unlike the previous overlays, the shifts between orders appear to generally happen 

along Axis 2 and less so along the dominate Axis 1. Some of the high variability observed within 

the Inceptisols, which span nearly the entire Axis 1, can likely be attributed to differences in soil 

series (Figure 2.13). Site R (plots 52-54, Inceptisol) of Amalu series is again isolated to the far 

left with Histic properties as well as management compared to other sites in the dataset.  
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Figure 2.12 PCA ordination of all plots and potential soil health indicators with the overlay of soil order 

to group plots by color.  
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Figure 2.13 PCA ordination of all plots and potential soil health indicators with the overlay of soil series 

to group plots by color.  
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Importance of land use, history, management, and disturbance upon notable variability 

While no one environmental variable perfectly explains all of the variability of sites, 

management appears to best identify clusters of meaningful differences with the clearest 

association to major data variance (Axis 1). The overarching differences between soils were also 

explained and meaningfully clustered to some degree by land cover, disturbance, and taxonomy. 

However, some subtle discrepancies remained within the identified management groups which 

stood out in the PCA, and site-specific descriptions of which provide a greater understanding of 

plot distribution to help identify patterns related to soil health (Figure 2.14). 
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Figure 2.14 The PCA ordination of sample plots grouped by land management across all land uses, and 

identification of sites with notable descriptions.  

 

Grassland  

Within the grassland sites, the “pasture” group is notably very large, spanning widely 

along Axis 1 (Figure 2.14). Of the grassland sites under UPIAL, most variability vertically can 

likely be attributed to differences in soil order (plots 31-33) (Figure 2.12). On the far right, plots 

40-42 (Site N) show a closer association towards the conventional cropland. Site N, now 

managed as quality pasture was disc-tilled within the last four years and had been under 

intensive long-term sugar cane agriculture prior which lead to reduced soil organic matter and 

negative impacts on soil physical and biological properties (Beare et al., 1994). While its history 

deems it to be a previous agriculture land, its current management qualifies it as pasture. In 

contrast, plots 49-51 (Site Q) on the far left of the pasture group exhibit opposite characteristics. 

This site has had little to no disturbance over the last two centuries, as a high quality pasture 

land, yet is also a Andisol which likely explains much of the apparent differences. The value of 

disturbance data is best demonstrated, however, by isolating the spatial distance between Site N 

and pasture plots 55-57 (Site S) which fall within the same soil series (Haliimaile). Site S has had 

minimal disturbance and has been managed for high quality pasture grass for nearly a century. 

While it is under the same current management and soil series as Site N, it’s intensive agriculture 
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history potentially contributed to it being spatially closer to conventional agriculture sites than 

near the undisturbed grasslands 

Forest 

The forest sites showed general closeness spatially to each other, apart from one site, and 

they trended with higher organic matter and soil life as expected based on land cover alone 

(Figure 2.14). Plots 52-54 (Site R) are by far the most unique group of samples in this dataset. 

Existing in wet conditions with poor drainage and high accumulated carbon, this site is nearly a 

Histosol. This Histic Inceptisol is also of pristine native forest condition and exhibits notably 

high values in nearly all biological and carbon-related parameters. As a result, plots within Site R 

are isolated on the far left (Figure 2.14). Because of its unique history, vegetation, and 

management, it required its own category of management. In the opposite direction, plots 43-45 

(Site O) fall into another unique category of land use. Site O is notably far from other forest 

groups, which can likely be attributed to its pedogenic origin (Inceptisol) as well as historical 

data of being under intensive agriculture 40-50 years prior and its current vegetation 

characterized by invasive species. Such supplemental information for Site O could explain why it 

is spatially plotted closer to the other UPIAL sites rather than forest groups, regardless of its land 

cover being different from other UPIAL sites (grasslands).  

Cropland 

Overall, the respective effects of cropland land use (distinguished as either organic or 

conventional) on soil properties appeared to behave as expected, exhibiting lower values overall 

in carbon and soil life and particularly lower in the conventional group (Figure 2.14). However, 

two Mollisol sites differing in management and soil series, plots 1-3 (Site A) and 4-6 (Site B), 

behaved opposite from expected (Figure 2.13). Site A is currently managed organically, yet was 
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under conventional agriculture just five years prior, while Site B has been under conventional 

agriculture long term. Crops at Site A were recently sprouted during the time of soil collection 

and soil was recently tilled prior to sample collection in contrast to Site B. Site B, while 

conventional, was at the end of harvest and likely had not been treated for pesticides (or tillage) 

in a more considerable amount of time than Site A. It is unknown how the inherent differences in 

soil series impact the differences observed in these two sites. All site differences considered, this 

highlights the challenge of providing one fully-descriptive label per site. 

 

2.4.4 Land cover, management, and disturbance drive soil differences 

Soil data variance and major axis associations 

 The visual assistance of PCA allows for the explanatory data groups and their patterns 

with the data variance to be more easily identified. Recalling that the greatest soil variance 

observed was on significant Axis 1, shifts in explanatory data groups were observed primarily 

horizontally along Axis 1, particularly land use, management, and soil disturbance. Shifts of 

taxonomy groups generally occurred in a vertical fashion along Axis 2. Land management 

appeared to show the strongest horizontal trend as supported with identifying group centroids, or 

spatial centroids, on the PCA (Figure 2.15). However, it is important to consider that centroids 

are impacted by all points within the group and unusual or notable plots such as the cropland 

Mollisols (1-6) and historical disturbance differences of the pasture sites cannot be adjusted 

without removing plots all together. Nonetheless, the overlay of management shows a strong 

visual relationship with the greatest data variance and suggests that it is the lead driver of 

differences in indicators related to soil health.  
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Figure 2.15 The PCA ordination of sample plots with group centroids, using the overlay of management 

across all sites. 
 

Gradient of management related to soil health 

The experimental design of data collected intended to capture high soil diversity across a 

wide range of soil health potential, and the highest variance between sites showed the strongest 

association to land management groups. While soil health cannot yet be defined as a response 

variable to the management groups without a developed index, optimal values for indicators 
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selected to represent soil health increased the left of Axis 1 (2.6). This trend across many 

variables supports the observation that a spectrum of soil health may be observed along Axis 1 

with greater soil health towards to the left. Variables most strongly correlated to the spectrum of 

data variance on Axis 1 are soil carbon and indicators measuring soil life, with increasing 

amounts of each to the left (negative correlation to Axis 1).  Following in support of a potential 

soil health gradient along Axis 1, higher values of biological activity and carbon content are 

typically associated with greater soil health as they represent the living ecosystem in the soil as 

well as the necessary substrate for life (Moebius-Clune et al., 2016). For those indicators loading 

primarily on Axis 1 in contrast to Axis 2, the negative correlation of nearly all “more is better” 

indicators of soil health associate with the less disturbed land cover and management groups on 

the left (pasture and forest) displaying higher values of these parameters (Figure 2.6, Figure 2.9). 

This observation of the site grouping associations to soil health indicators is supported in studies 

of landscapes with low disturbance, where soil aggregation is higher along with greater soil life, 

as well as plant residue accumulation on the surface showing reduced loss of soil organic matter 

and resulting in increased soil carbon (Havlin et al., 1990). Higher organic carbon content and 

soil microbial biomass also have been shown to consistently represent higher soil health using 

various methods of soil quality assessment in a meta-analysis from Karlen et al. (2001). The 

observed gradient of differences in soil characteristics relating to soil health suggests that 

protected forests are on the optimal end of land use and management to achieve high soil health 

regarding a soil ecosystem with optimized soil functions, and conventional cropland on the less-

optimal end (Figure 2.16). Such findings of minimally disturbed areas with high values for 

“more is better” indicators of soil health, and more disturbed areas having lower values for 

“more is better” indicators of soil health, supports reasoning to use Axis 1 as an exploratory 
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method of identifying sensitive indicators of soil health. Hypothesis one, stating that the intensity 

of agricultural activity is a main driver of differences in indicators representing measurements 

related to soil health is accepted.  

 

 

Figure 2.16 The PCA ordination of sample plots with group centroids demonstrating the horizontal shift 

of groups marked with a corresponding colored vertical line, using the overlay of land management across 

all land uses. 
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A nonparametric procedure for testing differences in data groups (multiple response 

permutation program, MRPP) was used to find significant differences between the identified 

management groups appearing along the gradient of potential soil health (Table 2.8). MRPP was 

selected because of the compatibility with non-distributional assumptions (McCune and Grace, 

2002). Significant differences were observed between all groups along the gradient (Figure 2.16, 

2.17). However, because the MRPP group differences are measured in multiple dimension space 

rather than a linear line as proposed for the gradient, this method should be considered as 

supplemental support for the observed soil health gradient but not serving as a definitive 

statistical analysis.  

Table 2.8 Results of a multiple-response permutation program (in PC-ORD) to test significance of 

multidimensional spatial differences between the proposed varying management groups. 

 

 

 

Connections between land use and “soil health” as a relative term 

The exploratory nature of these results demonstrate how known attributes of soil health 

can be applied to management and land use in Hawaiʻi. “Soil health” as a relative term can mean 

many things to different land users, however, patterns of soil qualities associated with the 

selected definition of soil health and critical soil functions are observed to trend along the high 

variability identified in the PCA. “The continued capacity of soil to function as a vital living 

ecosystem that sustains plants, animals and humans,” (NRCS, 2018) applies to the selected 
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landscapes with various critical soil functions which translate into goals for the soil (e.g., to 

protect native vegetation, to raise animals, to grow vegetables) and with a wide range of 

ecosystem diversity. From this definition we can reinforce that healthy soil is about soil as a 

living entity. The physical and chemical indicators of soil health represent the processes that 

support life such as soil structure and soil nutrients. The biological biomass and microbial 

processes that cycle nutrients and interact with physical and chemical properties of soil create a 

living ecosystem, which, sustains plants, animals, and humans. Hence, the balance of physical, 

chemical, and biological indicators all play vital roles in maintaining soil life and hence soil 

health, and all are impacted by disturbance to the soil. Visual interpretation of the PCA helped to 

identify a gradient of land disturbance with management, and the data suggests that a Hawaiʻi 

gradient of soil health by management is seen from left to right on Axis 1 representing optimal to 

less optimal soil health, respectively (Figure 2.17). 

 

 

Figure 2.17 PCA group centroids from management displayed a gradient of Hawaiʻi potential soil health 

increasing to the left, and suggest land management as a strong driver of differences in potential soil 

health (p-values between groups derived from MRPP analysis, Table 2.8 [Note: MRPP values measure 

multidimensional space differences and are only used as supplemental data to the proposed linear 

gradient]). 

 

There is room for improvement at any point on the soil health continuum, with a 

measured shift in health to the left seen as a positive management practice. Those practices that 
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facilitate shifts to the left, while supporting the livelihoods of land managers, exhibit the benefits 

of having a soil health index. Identifying those practices that can reliably assist in shifts are 

necessary to associate soil health with the benefits to farmers. While there are limitations to the 

relevance of this gradient for practical reasons such as modern humans requiring agricultural 

land for food, the identification of such a gradient can hone goal setting for restoration of 

degraded lands, give farmers tangible guidelines for improving soil, and be useful to track soil 

health over time. 

 

2.4.5 A reduced set of sensitive indicators for development of a soil health index 

 

Sensitive indicators and correlations to major data variance 

Indicators were reduced by quantitative and qualitative criteria beginning with the 

quantitative reductions. The greatest explanatory factor of differences in potential soil health in 

reviewing PCA trends was seen along Axis 1, and associated to land management (Figure 2.16, 

Figure 2.17). Therefore, those variables with strong correlations to Axis 1 were identified to be 

the most sensitive indicators of differences across the diversity of soils and potentially most 

useful as indicators of soil health (Karlen et al., 2001). Due to the exploratory nature of PCA as a 

method of statistical analysis, there is no standard of what correlation values are deemed 

appropriate and potentially significant. Generally, statistical correlations (absolute value) equal 

to or less than 0.35 represent low or weak correlations, 0.36 to 0.67 are moderate correlations, 

0.68 to 0.90 are strong, and above 0.90 are very strong (Taylor, 1990). Those parameters equal to 

or above 0.68 correlation to Axis 1 were considered statistically strong and potentially sensitive. 
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From 30 potential indicators of soil health, 15 showed a correlation greater than 0.68 and were 

considered strong enough to be retained for further evaluation (Table 2.9).  

Table 2.9 Correlation values of indicators to all four significant PCA axes organized in order of strength 

to the dominant axis, with those parameters above 68% correlation are considered strong and potentially 

sensitive (*).  
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Further consideration of cropland sensitivity 

The soil health index is critical for cropland systems as a tool to assist farmers in 

implementing soil management strategies that aggrade soil health and function. To ensure that 

cropland sensitivity is captured, results of an additional PCA were considered. The experimental 

design combined diversity of management within soil taxonomy, yet not necessarily the same 

combinations. This was an inevitable product of landscape and soil order interactions (e.g., 

inherently fertile soil types for croplands), as well as what is finitely available for sampling. 

Because the strength of variables correlating to main axes changed considerably when looking 

only at the cropland and UPIAL sites during PCA data balance assessment, the indicators 

sensitive to change within a second analysis were compared to the results of the full landscape. 

The cropland system PCA determined three significant axes, cumulatively explaining 65% of the 

overall data variance (Table 2.10). The major Axis 1 explained 29% variance, Axis 2 with 22%, 

and Axis 3 with 14% (Table 2.11). No patterns of useful second matrix association were 

observed from Axis 3 so it was not graphically displayed.  

Table 2.10 Randomization results from the PCA output are used to determine the number of significant 

axes for interpretation, with the first three axes considered significant (p-value < 0.05).  
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Table 2.11 Variance extracted results report the percent of variance explained per axis as well as 

cumulatively. A cumulative total of 64.9% data variance is explained from the three significant axes 

(Table 2.10).  

 

 

The cropland PCA showed two axes of similar strength pulling management groups in 

opposite directions. Again, the dominant axis associated best with management practice (Figure 

2.18), however, with a strong impact of soil order as well from Axis 2 (Figure 2.19). Due to 

recent disturbance across all cropland samples, the level of historical disturbance was not a 

useful predictor of potential indicator differences. Similar to the full landscape PCA, ‘more is 

better’ indicators strongly associated with soil carbon and soil biology showed to increase 

towards the left of the graph where the organic management group exists (Figure 2.18). Towards 

the right are the conventional agriculture sites and the UPIAL sites generally observed in 

between organic and conventional on Axis 1. The only overlap observed between groups are due 

to Mollisol plots 1-6 (Site A and B) which, as previously mentioned, behaved against 

expectations.  

 



 83 

 

Figure 2.18 The PCA ordination of cropland and UPIAL plots and all potential soil health indicators with 

the overlay of land use and management.  
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 While Axis 1 shows variation associated with management, Axis 2 has a clear association 

with inherent soil properties relating to soil taxonomy (Figure 2.19, Figure 2.18). Soil order 

generally shifts vertically with Axis 2 showing that soil taxonomy must be considered when 

interpreting cropland soil health indicator values. Because Axis 1 again appears to dominate the 

variability of data as it relates to potential changes in soil health and management represents 

dynamic qualities that can be changed, indicator correlations to Axis 1 are evaluated for their 

sensitivity and potential to be used in a soil health index.  
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Figure 2.19 The PCA ordination of cropland and UPIAL plots and all potential soil health indicators with 

the overlay of soil order. 
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Figure 2.20 The PCA ordination of cropland and UPIAL plots with group centroids, using the overlay of soil 

order. Centroids of the groups generally show shifts in taxonomy occurring vertically along Axis 2, rather 

than associating with the dominant axis of data variance explained.  

 

The PCA output of indicator correlations to significant axes identifies similar sensitive 

indicators to those from the full landscape PCA. The only sensitive soil health indicator in 

croplands with a 68% or greater correlation value to Axis 1 that was not included in the full 

landscape analysis was β-glucosidase, and a near-qualifying value for water-stable macro-

aggregates (Table 2.12). To maintain the applicability of soil health testing to be representative 

of cropland needs, β-glucosidase was added to the final list of sensitive indicators. While the 

water-stable macro-aggregate indicator did not have a strong correlation, it is recommended as a 

potential indicator to consider for cropland-specific testing as it with a near-strong correlation 

value of 0.65 (Table 2.12).  



 87 

 

Table 2.12 Correlation values of indicators to all three significant PCA axes from cropland and UPIAL 

soils organized in order of strength to the dominant axis, and those parameters above 68% correlation are 

considered strong and potentially sensitive (*).  
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Multicollinearity, soil function, and practicality of sensitive indicators  

The sensitive indicators selected through PCA were examined comparatively for 

multicollinearity, to further downsize recommended indicators. The PCA process resulted in a 

reduction to sixteen indicators including: % total organic carbon, % total nitrogen, PLFA, 24-

hour CO₂ burst, dissolved organic carbon, hot water extractable organic carbon, potentially 

mineralizable nitrogen, acid phosphatase, hot water extractable inorganic nitrogen, total 

dissolved nitrogen, C:N, β-glucosiminidase, water holding capacity, bulk density, water-stable 

mega-aggregates, and β-glucosidase. This group of 16 indicators cover all five critical soil 

functions and represent a balance across biological, chemical, and physical soil measurements 

(Table 1.1) (Karlen et al., 2001). Using a correlation matrix between untransformed parameters, 

highly sensitive indicators with R² values above |0.90| were considered very strong and suitable 

for further reduction (All indicators in Figure 2.21, sensitive indicators in Figure 2.22) (Taylor, 

1990, Karlen et al., 2001). Hot water extractable inorganic nitrogen, total dissolved nitrogen, 

dissolved organic carbon, acid phosphatase, and total nitrogen were removed, as all showed high 

correlation to other sensitive indicators with overlap in their intended measured soil function as 

well as lesser practicality in contrast to their comparable indicators (Table 2.13). 
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Figure 2.21 A correlation matrix between all untransformed parameters, values range from -1 to 1 and 

also indicated by color. Values greater than |0.90| are considered very strong.  
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Figure 2.22 A correlation matrix between the 16 untransformed parameters considered to be sensitive 

along from PCA, that could be further reduced by logic of multicollinearity. Values range from -1 to 1 

and are also indicated by color. In this figure, high values are clustered to clearly see those that can be 

considered for reduction.  
 

The final step in the indicator reduction process involved a qualitative assessment of the 

practicality and cost of the measurement. Indicators that required extensive or experienced labor 

or incurred high costs were candidates for removal. With those limitations, bulk density was 

removed due to the difficulty of acquiring an undisturbed core in the field, and PLFA was 

removed due to high cost and the need for outsourced testing, which required extensive soil 

handling and preparation. Indicators excluded by all processes of reduction are summarized in 

Table 2.13. 
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Table 2.13 A list of 21 indicators excluded from recommendations for routine Hawaiʻi soil health testing.  
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The final set of sensitive and practical indicators  

After assessing the sensitivity, interpretable value, feasibility, field collection practicality, 

and laboratory resources required, the best indicators to use in a routine soil health test for 

Hawaiʻi were reduced to nine parameters, capturing all five critical soil function goals (Table 

2.14, Table 2.15). Hypothesis two, stating that values of water stable aggregates, potentially 

mineralizable nitrogen, soil respiration, and bulk density are the strongest indicators of soil 

health, is partially accepted. This partial acceptance acknowledges that while these variables are 

in the final index list, not all were the top sensitive variables and bulk density, despite its 

sensitivity, was excluded due to practicality.   

Table 2.14 After assessing the sensitivity, interpretable value, feasibility, field collection practicality, and 

laboratory resources required, the recommended indicators to use in a routine soil health test for Hawaiʻi 
were reduced to 9 parameters.  

 

Potentially Mineralizable Nitrogen

24 hour CO2 Burst

β-glucosidase

β-glucosiminidase

Hot Water Extractable Organic Carbon

Biological

Proposed Indicators of Hawaii Soil Health
Measured parameters of soil health span physical, chemical, and biological aspects of soil

C:N 

Physical

Chemical

Water Holding Capacity

Water-Stable Mega-Aggregates

% Total Organic Carbon
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Table 2.15 The recommended nine indicators of Hawaiʻi soil health and their corresponding critical soil 

function. 

 

 

Biological indicators show highest sensitivity to soil variance 

Biological indicators and those indicators closely reliant on biological processes showed 

the greatest sensitivity to data variability and hence soil management (Table 2.9). Meaningful 

measurements of soil health are intended to capture the changes in a soil ecosystem that are 

reflective of dynamic soil properties and are often most impacted by management (Karlen et al., 

2008). While inherent soil qualities such as those most commonly found as chemical and 

physical indicators may take significant time to change in a soil or cannot change, dynamic 

qualities are a powerful tool in soil health assessment with indications of soil health changes that 

often precede detectable physical or chemical changes (Nielsen et al., 2002). The biological 

indicators as leading predictors of soil health can be attributed to their rapid responses to 

environmental stress associated with soil disturbance (Nielsen et al., 2002). Microbes play key 

Recommended Indicator Soil Function(s) Relation

Water holding capacity   
Water supply, medium for plant growth, 

soil life

% Water-stable mega-aggregates

Carbon storage and cycling, medium for 

plant growth, water infiltration and supply, 

soil life 

% Total organic C Carbon storage, soil life

C:N Soil life, nutrient cycling 

24 hr CO2 burst
Soil life, nutrient cycling, carbon storage 

and cycling

Hot water extractable organic C Soil life, carbon storage and cycling

Potentially mineralizable N Soil life, nutrient cycling

Beta-glucosiminidase Soil life, nutrient cycling

Beta-glucosidase Soil life, nutrient cycling, carbon cycling

Chemical

Biological 

Physical 
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roles in soil health such as decomposition of organic matter, mineralization of and recycling of 

nutrients, nitrogen fixation, detoxification of pollutants, maintenance of soil structure, biological 

suppression of plant pests, and the reduction of parasitism (Stirling, 2014, Brackin et al., 2017). 

The loss of such functions in the soil can be directly associated to loss of crop productivity (e.g., 

increases of plant pests leading to decreases in harvestable crop) and highlight the vital 

importance of soil life in hierarchical controls on critical soil functions. 

 

Importance of physical and chemical indicators on soil health and fertility testing 

While dynamic soil qualities are preferable to detect changes in soil health as they better 

relate to the soil ecosystem as a living entity, the impact of inherent soil qualities upon the soil 

ecosystem remain crucial (Karlen et al., 2008). Some of the physical and chemical potential soil 

health indicators, which did not show to be as sensitive as the biological measures, are 

considered dynamic and many of them are considered to be inherent qualities. Regardless of the 

group they fall into, physical and chemical soil qualities play crucial roles in soil function such 

as impacting the availability of nutrients and the structure of the soil which then holds water, air, 

and supports life. The sensitive indicators corresponding to Axis 2 of both PCAs (full landscape 

and cropland sensitivity) included nutrient measurements as well as those related to taxonomy 

(e.g., texture classes) (Table 2.9, Table 2.12). Particularly for cropland systems, these indicators 

greatly impact crop production and fundamental for proper soil nutrient management. In order to 

make appropriate fertilization choices in a commercial farming operation, soil fertility testing 

should be included in addition to a soil health test so as to not exclude crucial measurements 

regarding nutrients. Properly managed nutrients benefit both the farmer by achieving target 

yields and avoiding expensive and unnecessary nutrient additions as well as benefiting the 
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environment by reducing risk of nutrient runoff, eutrophication, and pollution of nearby 

ecosystems.  

 

2.4.6 Interpretation of soil health indicators 

 The values obtained from all potential indicators of soil health can vary in their 

interpretation whether it be “higher is better,” “lower is better,” or “optimal value.” However, the 

reduced set of indicators are all generally considered to be of the “higher is better” category with 

the exception of C:N ratio which often falls into an “optimal value” category. The relationship of 

each to measured soil health can be supported from results of many other studies. Values vary 

with intrinsic soil differences, but the overall interpretation of indicator scores can be 

summarized in Table 2.16 along with potential supplemental fertility measurements.  

 

Water holding capacity  

A soil’s ability to hold water is vital for sustained plant growth and supporting microbial 

life and is often correlated to the amount of organic matter in the soil as well as bulk density 

(Brady and Weil, 2008). During times of water shortage, be it between rainfall events or due to 

drought, water held in the soil allows plants and soil life to survive. Acting like a sponge, soils 

with the ability to hold high quantities of water increases soil ecosystem resiliency in the face of 

drought conditions. Thus, higher values of water holding capacity are ideal for a healthy soil 

ecosystem. In agricultural systems, high water holding capacity reduces the need for irrigation. 

Conventional practices of tillage and crop residue management are major contributors to the loss 

of water holding capacity, which is closely tied to the amount of soil organic matter and overall 

soil structure (Arais et al., 2005, Karlen et al., 2001, Evanylo and McGuinn, 2000).  
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Water-stable mega-aggregates 

Soils with higher water-stable aggregates are associated with greater soil health as they 

improve the overall soil tilth by increasing water infiltration, water storage, water and gas 

exchange, total porosity, resistance to erosion, and by decreasing soil bulk density (Arai et al., 

2014). Soil aggregates store organic C by physically protecting soil C from microbial decay as 

well as restrict the diffusion of oxygen and enzymes (Blankinship et al., 2016, Berhe et al., 

2012). Agricultural practices such as tillage disrupt and reduce soil aggregates by physical 

destruction and lead to loss of soil structure which is vital to support life many soil functions 

such as carbon and water storage (Beare et al., 1994, Karlen et al., 2001, Haynes and Swift, 

1990).  

Percent total organic carbon 

High organic carbon serves many vital soil ecosystem and productivity functions and 

correlates to important physical, chemical, and biological soil properties. It is additionally 

associated with soils more resilient to drought, extreme rainfall, and disease (Bot and Benites, 

2005, Awale and Chatterjee, 2017). Intensive agriculture reduces soil organic matter content 

over time with many adverse effects (Arias et al., 2005).  

C:N ratio 

The C:N ratio compares the mass of carbon in the soil to the mass of total nitrogen and is 

an indicator of maintaining a healthy microbial environment, as microbes must obtain proper 

ratios of each to sustain their bodies (NRCS, 2019). Values for C:N ratios vary with vegetative 

cover and soil type and should be monitored to maintain a sufficient ratio for microbial function 
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and to assess mineralization/immobilization dynamics (NRCS, 2019). In relation to soil health, it 

can be a useful predictor for disease suppression (van Bruggen and Semenov, 2000).  

 

24 hour CO2 burst  

Soil respiration methods measure the metabolic activity of the microbial communities in 

the soil, an important aspect of soil fertility and a functional ecosystem (Haney et al., 2008). 

Greater respiration of the microbes in soil is indicative of greater activity of the soil microbes 

present which contribute to organic matter decomposition and nutrient cycling (Evanylo and 

McGuinn, 2000, Haney et al., 2008). A 24 hour CO2 release highly correlates with other methods 

of soil respiration such as microbial biomass (Haney et al., 2008). Moisture, temperature, 

oxygen, soil pH, and available substrates can impact soil respiration as well as practices that lead 

to loss of soil habitat such as tillage or addition of chemicals such as fungicides targeted for 

pathogenic organisms (Evanylo and McGuinn, 2000). Because soil respiration is a process tied to 

both carbon mineralization and decomposition, it provides benefits and drawbacks yet 

sustainability of the organic matter must be maintained. For this reason, higher respiration rates 

are not always representative of a healthy soil ecosystem, but they are indicative of strong 

microbial activity. Identifying an optimal level associated with a natural, undisturbed condition 

may be appropriate (Evanylo and McGuinn, 2000, NRCS, 2018).  

Enzymes β-glucosidase and β-glucosiminidase 

These two enzymes are substrate-specific and reflect the ability of a soil to decompose 

organic matter and release N into plant available forms (Alkorta et al., 2003). Enzyme activity 

can source from dead microbes, residues, and animals, and hence, concentrations of soil enzymes 

can estimate long term microbial activity and respond to changes in soil management more 
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quickly than many other indicators that slowly degrade such as total carbon loss ((Tabatabai, 

1994, Dick et al., 1994). Higher values of these enzymes are associated with healthier soils more 

capable of recycling C and N and organic matter stabilization (Das and Varma, 2010, Bandick 

and Dick, 1999). Enzyme function may be inhibited by chemicals introduced to the soil by 

pesticide application and can result in problems with plant nutrition (Alkorta et al., 2003).  

Hot water extractable organic carbon 

Hot water extractable carbon is associated with aggregate formation, a reserve of 

nutrients and energy for plants and microbes, as well as biological activity. The procedure lyses 

microbe cells and releases biomass components and non-biomass substances which relate well 

with microbial biomass C (Sparling et al., 1998, Ghani et al., 2003, Hamkalo and Bedernichek, 

2014, St. Luce et al., 2016). Water extractable carbon measurements reflect changes in labile soil 

organic matter caused by intensive agricultural practices which reduce microbial biomass and 

microbial activity. (Hamkalo and Bedernichek, 2014). Higher values of hot water extractable 

organic C are representative of greater soil health as they relate to critical soil functions of 

carbon storage and soil biodiversity.  

Potentially mineralizable nitrogen (PMN) 

The conversion of nitrogen from complex organic forms into ammonium (mineralization) 

is a biological process in which nitrogen becomes plant available. Various microbial groups 

convert these molecules into ammonium and nitrate by mineralization and nitrification which 

plants can then uptake (Moebius-Clune et al., 2016). Higher values of PMN increase plant 

nutrient availability and contribute to overall enhanced microbial growth and activity such as C 

and N cycling (NRCS, 2018, Doran, 1987, Drinkwater et al., 1996). Thus, higher PMN is often 
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correlated to greater soil health (Karlen et al., 2001m, Moebius-Clune et al., 2016).  

 Table 2.16 Summary of general indicator interpretation with supplemental soil fertility data. 

 

 Management effects on soil health indicators 

 A gradient of differences in soil characteristics related soil health to soil management, 

and allowed for identification of the most sensitive indicators for soil health testing (Figure 2.17, 

Table 2.14). In support of these conclusions, the averaged untransformed values of the final 

indicators within each management group decrease towards management groups on the right of 

the spectrum representing lower soil health (Figures 2.23a-i).  Due to the characteristically high 

carbon of the Amalu series Histic Inceptisol (Site R) and unique condition of it as native forest, it 

is not included as an extreme outlier without data transformation (Appendix C). The relatively 
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clear trend of increased values for management groups with presumed higher soil health for all 

indicators supports their performance and ability to differentiate across management classes.  

 

Figure 2.23.a Averaged values within management groups regressed with potentially mineralizable 

nitrogen, with standard error bars above each data point and R2 value of 0.93. 
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Figure 2.23.b Averaged values within management groups regressed with total organic carbon, with 

standard error bars above each data point and R2 value of 0.86. 

 

 

Figure 2.23.c Averaged values within management groups regressed with β-glucosiminidase with 

standard error bars above each data point and R2 value of 0.85. 
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Figure 2.23.d Averaged values within management groups regressed with β-glucosidase with standard 

error bars above each data point and R2 value of 0.68.  

 

 

Figure 2.23.e Averaged values within management groups regressed with hot water extractable organic 

carbon, with standard error bars above each data point and R2 value of 0.94. 
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Figure 2.23.f Averaged values within management groups regressed with water-stable mega-aggregates, 

with standard error bars above each data point and R2 value of 0.77.  

 

 

Figure 2.23.g Averaged values within management groups regressed with 24-hour carbon dioxide burst, 

with standard error bars above each data point and R2 value of 0.80. 
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Figure 2.23.h Averaged values within management groups regressed with water holding capacity, with 

standard error bars above each data point and R2 value of 0.81. 

 

 

Figure 2.23.i Averaged values within management groups regressed with C:N, with standard error bars 

above each data point and R2 value of 0.78. 
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Soil disturbance and management impact on ecosystem balance 

The nine indicators selected for soil health testing supported the observed trend of a soil 

health gradient related to management, including considerable impact related to the degree of 

disturbance (Figure 2.17, Figures 2.23.a-i). Evaluating the soil function these indicators represent 

with the implications of various management can then be used to better understand the 

association of management and disturbance to overall soil health.  

While there are exceptions, the level of disturbance in each management category is 

generally predictable unless specific sites are making considerable efforts to further reduce 

disturbance or are adding excess disturbance. Intuitively, forest lands experience little to no 

disturbance. For UPIAL sites, disturbance level is medium with 10+ years of a land not in 

agricultural use. However, it is apparent that there is a considerable remaining impact from such 

previous disturbance as it separates those sites far from the low disturbance sites, and 

comparable to the high and very high disturbance sites. Cropland sites are all considered very 

high disturbance since both organic and conventional methods add significant soil disturbance by 

tilling multiple times a year and may also be compacting the soil with farming machinery. For 

the most part, management categories captured the level of disturbance as well. 

The gradient of soil characteristics related to soil health aligning with disturbance and 

hence management patterns is likely primarily due to significant loss of soil life and sufficient 

soil structure to support such life (Moebius-Clune, 2016). Management practices associated with 

those management groups on the less-optimal end of soil health often damage the soil via 

compaction, tillage, pesticide application, and harvesting mechanisms. Compaction reduces the 

space between soil particles where air and water are held which are crucial components to 

supporting soil life and plant health (Moebius-Clune, 2016). Frequent tillage breaks soil 
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aggregates which typically benefit to increase water infiltration, water storage, gas exchange, and 

erosion resistance (Beare et al., 1994, Arai et al., 2014) Pesticides are standard practice in 

conventional management and the overuse of them in intensive agriculture kills necessary 

microbes and can also inhibit the ability of soil enzymes to cycle nutrients sourced from organic 

substrates (Alkorta et al., 2003). Harvesting crops often requires the removal of the living roots 

that support a rich microbial ecosystem in the rhizosphere (soil ecosystem near plant roots) and 

can deplete the soil carbon if there are no additions of organic matter such as compost (Walker, 

2003, Rasse et al., 2005).  

The lasting effects from intensive agriculture practices resulting in losses of microbial 

biomass, enzyme function, carbon, and degradation of soil structure, are observed in UPIAL 

sites. The time required to reaccumulate lost carbon as well as the loss of soil enzymes which 

assist in nutrient cycling, may explain the significant lag in UPIAL soil recovery to higher 

indicator values more comparable to a pasture grassland or undisturbed forest. Enzyme presence 

and their full function may be restored slowly due to previous pesticide applications and loss of 

microbes, animals, and organic matter (Tabatabai, 1994). Flourishing life is expected in a 

landscape that has been undisturbed for many years, such as non-UPIAL grassland and forest 

sites, if it were not for the apparent long term damage of previous land use (Menta, 2012, Alkorta 

et al., 2003).  

Without restoration efforts to assist in building soil organic matter and soil life, we 

cannot anticipate rapid improvement of soil health in abandoned or unmanaged lands. From the 

management gradient, we see that organic management holds slightly greater potential for soil 

health than UPIAL or conventional cropland, under the same or similar levels of disturbance 

(Figure 2.17). Typical organic management practices such as limiting pesticide use and adding 
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organic matter, which benefit soil the soil ecosystem, offer some support as to why organic 

management may score more favorably among soil health indicators compared to those of 

UPIAL and conventional sites (Awale et al., 2017). However, these changes of improving health 

of the soil ecosystem are not rapid and may take significant time to improve overall soil health 

and provide benefits to the farmer (Karlen et al., 2008).  

 

2.4.7 The role of taxonomy in soil health testing 

Soil order impact on selected soil health indictors 

The proposed sensitive indicators of soil health also display potential to detect differences 

in soils when grouped by soil order, further supporting their relevance to representing differences 

across soil diversity relating to soil health. Comparing like to like more effectively challenges the 

power of indicators in their sensitivity to management change since the behavior of soils between 

orders, while not a dominant axis, can be considerably impacted by pedogenic effects that make 

soils intrinsically different regardless of management (Beare et al., 1994). In Figures 2.24.a-i, the 

end points of the soil health gradient by management are highlighted within each soil order 

(Figure 2.24). Generally, the management groups are associated with their corresponding less 

ideal or more ideal calculated values for each parameter relating to soil health. A top sensitive 

indicator, the 24 hour CO2 burst, demonstrates well how a soil health gradient by management 

can exist within each soil order and how values between orders aren’t necessarily comparable 

(Figure 2.24.a). For example, the optimal management of Vertisols within the dataset (organic), 

while having higher scores for this indicator and many indicators than the less-optimal 

management groups (conventional and UPIAL), still has values less than comparable 

management types of other soil orders. The Mollisols notably do not follow this pattern and 
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instead show the opposite pattern of sensitivity, with the conventional plot indicating higher 

potential soil health than its organic counterpart for most indicators (refer to Section 2.4.3 on 

notable sites, cropland). Despite the small sample size per soil order, Figure 2.24a-i suggests that 

the indicators are able to detect differences between varied management. The qualitative 

assessment of indicator sensitivity within and across soil order highlights the importance of how 

taxonomy affects soil health and hence its notable impact on PCA and association to Axis 2.  

 

Figure 2.24 Legend corresponding to Figures 2.24.a-i. Sites 

of the same soil order are grouped with a red box. Using the 

soil health gradient from Figure 2.17, the management group 

within the order on the least optimal of the gradient is 

identified with yellow, the group on the optimal end 

identified with purple, and all groups that fall between 

optimal and least optimal soil health are identified with blue.  

 

 

Figure 2.24.a Site averages with standard error bars for CO2 burst grouped by order. 
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Figure 2.24.b Site averages with standard error bars for water-stable mega-aggregates grouped by order. 

 

Figure 2.24.c Site averages with standard error bars for C:N grouped by order. 
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Figure 2.24.d Site averages with standard error bars for total organic carbon grouped by order. 

 

Figure 2.24.e Site averages with standard error bars for β-glucosidase grouped by order. 
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Figure 2.24.f Site averages with standard error bars for β-glucosiminidase grouped by order. 

 

Figure 2.24.g Site averages with standard error bars for hot water extractable organic carbon grouped by 

order. 
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Figure 2.24.h Site averages with standard error bars for potentially mineralizable nitrogen grouped by 

order. 

 

 

Figure 2.24.i Site averages with standard error bars for water holding capacity grouped by order. 
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Figures 2.24.a-i The untransformed parameter values of the reduced set of indicators show qualitative 

differences between the soil management/disturbance gradient when grouped by soil order. Soil orders are 

grouped within red boxes and the management groups within each soil order that are associated to 

characteristics in soil parameters related to soil health, and hence to soil health, are highlighted in color. 

Site R is removed from some graphs (d, g, h, and i) as an extreme outlier without data transformation 

(Appendix C). 
 

While the impacts of management showed to be the leading determinant of variation in 

soil health across landscapes, soil taxonomy played a crucial role in the behavior of soil indicator 

values within orders. In comparing like to like in Figures 2.24a-i, effects of management clearly 

impact the indicators. However, comparisons of indicator performance between soil orders is 

misleading if interpreted as a ‘one size fits all’ test. For example, the conventional Andisol (Site 

L) would be interpreted to have a similar or “higher” soil health score using most sensitive 

indicators, such as total organic carbon, than some of the pasture or organic management types 

of other soil orders sampled (Figure 2.24.d). Andisols are typically rich in amorphous material 

and as a result of high surface area have the ability to hold high amounts of carbon which, in 

addition to total carbon measurements, can positively impact indicators such as water holding 

capacity, hot water extractable carbon, and soil aggregation. These qualities may be ideal for the 

goal of improving soil health to sequester more carbon, for example, but it cannot be deduced 

then that Andisols are healthy and Oxisols are not. Overall, the clusters of soil order must be 

identified and before comparative soil health assessment.  

Ideally with a more robust data set, a soil health test would be developed for each soil 

order to capture the unique impacts upon soil health parameters. With the current available 

dataset, most soil orders are represented by a total of three sites with varying management (e.g., 

nine plots sampled), and so low sample sizes limit the ability to develop a list of sensitive 

indicators within soil order using separate PCA. Instead, the current dataset is useful to explore 
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the sensitivities of indicators across the landscape and capable to differentiate upon management. 

To determine the values of each selected indicator that represent the high and low ends of an 

index scoring system within a soil order, a larger number of samples is necessary and 

recommended to further develop indicator sensitivities tailored for soil order groups.  

 

2.4.8 A recommended tiered system approach to soil health testing 

 

With high potential variability among soil types and management, a ‘one size fits all’ soil 

health index is not a suitable approach for Hawaiʻi. The final indicators for soil health 

assessment are recommended to be used in conjunction with soil taxonomy. Inherent soil 

differences are crucial to assess before setting realistic goals of measured soil health values. 

Then, overall soil management goals can be appropriately identified and compared to sites of 

similar soil type (Figure 2.25). The accuracy and applicability of a Hawaiʻi soil health index will 

be continually optimized as the dataset is expanded with continued research, and optimal values 

of each indicator can be tailored to environmental variation. 
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Figure 2.25 A conceptual map of a recommended tiered system approach to soil health testing, which 

addresses the factors impacting goal setting and variability in soil health test results. 

 

A case study of management effect in Oxisols 

 Three sites of the same Oxisol soil series under different long-term management offer a 

case study example for the application of a soil health test (Table 2.17). Two of the sites are 

managed as cropland systems (organic versus conventional) and the third site is a UPIAL site 

that has not been under cultivation for at least 10 years and is a reasonable example of the health 

of this soil type when under uncultivated conditions (Figure 2.25). While unitless weights of a 

soil health index are not yet developed to apply to these site indicator scores for one overall score 

for each site, indicator values between the two sites can still be compared using the guidelines of 

“higher is better,” “lower is better,” or “optimal value,” regarding increasing soil health (Table 

2.16). Ideally with the recommended tier system, these soils would use a soil health index 
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calibrated for reasonable optimal values within the taxonomic group of Oxisols. Comparing the 

two managed farms with the UPIAL site with supplemental information from fertility testing 

demonstrates the benefits of organic farming on soil health, and can also help highlight where 

improvements can be made on the conventional farm to increase soil health as well as assess any 

unnecessary costs associated with excessive nutrient application.  

Table 2.17 Averaged parameter values (standard error in parentheses) of selected indicators and 

supplemental fertility data for Oxisols under organic, conventional, and UPIAL management.  

 

 

 The various management groups of these Oxisols exemplify expected trends of change 

across the physical, chemical, and biological indicators of soil health. Water-stable aggregates 
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are highest in the UPIAL soil likely due to reduced soil disturbance (tillage) and lowest in the 

conventional soil, likely attributable to the loss of organic matter. Considering such low current 

values, even small increases in water-stable aggregates of the conventional soil have the potential 

to benefit soil function by reducing loss of soil to erosion and increasing water infiltration.  

The soil biological life relies greatly on the presence of organic matter and the loss of which in 

the conventional management is also demonstrated. In contrast, organic matter inputs, rich in 

microbes as well as a source of carbon, in the organic and UPIAL management are likely 

responsible for higher values for all microbial activity and enzyme indicators representing 

greater soil health. Such inputs continually added to the organic system have resulted in a 

considerable increase in total organic carbon and hot water extractable organic carbon compared 

to the other sites. Lastly, relatively high values of phosphorus in both cultivated soils suggest that 

continued application of P inputs are not necessary to maintain crop growth which can help 

farmers reduce the costs of crop production. Continual use of compost and organic matter can 

contribute to the buildup of base cations and available phosphorus as well as a source of carbon 

that feed microbes and important in soil aggregate formation and maintenance. From the 

example of these Oxisols, a recommended step of improving overall soil health would be to build 

soil organic matter as it positively impacts many of the observed indicator differences, however, 

it requires substantial and diligent applications over time to continually aggrade the soil health.  

 

A case study of disturbance effect in Inceptisols 

 Three Inceptisols (Haliimaile series) on Maui demonstrate the effect of disturbance level 

on soil health. (Table 2.18). Comparing values from a conventional site (disturbance level = very 

high), a pasture with recent agriculture history (disturbance level = high), and a long-term 
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pasture (disturbance level = low) suggest that the long-term pasture has the highest health and 

the conventional site the lowest. While two of these sites are currently managed with the same 

goals and with the same current practices and vegetative cover (forages), the legacy of previous 

conventional management is evident in the newly-converted pasture site. For example, overall 

carbon is low in the conventional system when compared to the undisturbed long-term pasture 

ecosystem with a total organic carbon value approximately 10 times higher (Table 2.18). Overall 

there are increases in nearly all indicator values from conventional to short-term pasture, and 

again increases from short-term pasture to long-term pasture with considerable biological 

indicator increases. Comparing the UPIAL pasture to the conventional site highlights the 

potential for aggrading soil health in a relatively short period of time. It is reasonable to assume 

that the short-term pasture and conventional site would have been very comparable just five 

years prior, and that in just five years, the pasture site has doubled carbon and microbial indicator 

values. Historical information on land use regarding disturbance shows considerable impact upon 

the potential soil health of soils when there are no other clear environmental differences, and 

emphasizes the importance of including such information to better understand the condition of 

the land and potential lasting impacts of previous and current management decisions.  
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Table 2.18 Averaged parameter values (standard error in parentheses) of selected indicators and 

supplemental fertility data for Inceptisols under conventional, short term pasture proceeding intensive 

agriculture, and long term pasture management.  
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2.5 NEXT STEPS AND CONSIDERATIONS 

2.5.1 Expanding the database and determining target values of soil health 

 

The next steps in the development of a soil health index for Hawaiʻi will rely on 

expanding sampling to build a robust dataset that adds to the soil diversity and management 

practices already established. Additionally, the implementation of on-site field trials evaluating 

the effect of various soil management practices on soil health is required to help farmer decision-

making. With an increase in sample size, differences in values can be more closely attributed to 

environmental differences such as soil order or management. Testing the efficacy to improve soil 

health based on management change will provide crucial information to guide farmer decisions 

for soil health improvement, as well as make connections between crop yield and indicators of 

soil health. The addition of such a response variable will allow for the development of optimal 

values for each indicator and the ability to develop an overall score of soil health.  

 

Crop productivity and soil health 

Expanding the dataset of indicator changes across management and within soil order will 

improve the accuracy of a soil health index as well as the applicability among soil and land use 

diversity, such as cropland specific goals. The measured crop yield from field trials can identify 

optimal growth goals and assist in determining what actual values of each indicator are 

associated to optimized crop yield in comparison to a site with poor crop yield and contrasting 

soil health indicator values. For example, the addition of compost to a site may raise soil health 

indicator values and by x amount compared to another practice, which is a positive shift in the 

soil health gradient and beneficial as long as crop productivity is not compromised. The ideals of 
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crop productivity should not be confused with the goals of improving soil health, as 

improvements in the soil ecosystem may be slow to show a response in crop yield and are 

targeted to reduce negative impacts of land use on the environment. A farmer’s goals may be to 

maintain high yield and while reducing harmful environmental consequences. Therefore, soil 

health testing as well as crop yield tracking must both be independently managed and addressed 

to maintain the practicality of aggrading soil health in a cropland system.  

 

2.5.2 Creating realistic soil health goals 

 

The use of the identified soil health indicators is useful for long term landscape 

management goals. Forested land was most positively associated with desirable soil health 

parameter measurements, which suggests that Hawaiʻi use forest and undisturbed lands as 

proxies for optimal soil health goals. Improving soil health in such areas can maximize carbon 

sequestration, improve water quality, and support biodiversity in Hawaiʻi. However, a functional 

ecosystem contains many types of landscapes. For other systems like grassland and cropland, we 

look towards similar land cover areas with minimal disturbance to set realistic goals for ideal soil 

health values. It appears that UPIAL lands, while ‘natural’ in their lack of management, must be 

carefully selected if used as proxies for ideal soil health for cropland comparisons.  

 

Goals across landscapes  

Soil health testing a resource to see how land use change impacts Hawaiʻi soil as a 

natural resource. The top five sensitive indicators from the first PCA, for example, may be 

weighted more heavily in a landscape-based assessment of Hawaiʻi soil health (Table 2.9) 
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(Karlen et al., 2001, Andrews et al., 2002). As a whole landscape, the interpretation of a soil 

health index weighted as such could be used to assign value to the land under its current land use 

and management, and then determine what types of changes may be needed and to what intensity 

of restoration, to reach policy goals for the state. Effective responses to the degradation of soils 

must emanate from policy change that pertain to soil management by land managers (Lobry de 

Bruyn and Andrews, 2016). Providing the data for dynamic interactions of land management and 

soil health is crucial if the state plans to develop effective soil health policy, currently a 

considerable foreseeable challenge in Hawaiʻi due to lack of any current regulation (Stevens, 

2018).  

 

Goals in cropland systems 

Sensitive indicators within cropland use may be specifically useful for improving 

cropland management and developing farmer incentive systems. Focusing on cropland use and 

integrating sensitive indicators of the second PCA into the greater deduction of sensitive 

indicators ensured that the interests of farmers is strongly tied to the development of a Hawaiʻi 

soil health index (Table 2.12) (Karlen et al., 2001, Andrews et al., 2002). The ranking of 

sensitive indicators of the cropland and UPIAL soils from the second PCA, varying slightly from 

the original PCA (Table 2.9), can also be utilized when the goal of a landscape is to improve soil 

health and maintain the dominant land cover as cropland. By weighting the highly correlated 

indicators of the cropland PCA more heavily in a soil health index, a farm manager can 

potentially better detect changes in soil health as a result of changes in management practice. For 

example, β-glucosiminidase and potentially mineralizable nitrogen are two of the top five 

sensitive indicators in a cropland system, yet were not within the top five across the landscape, 
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and so these indicators may be given higher unitless weight when scored into a soil health index 

focused on cropland soil health management. Similarly, a farmer may choose to focus on 

integrating management practices that are shown to increase values for β-glucosiminidase and 

potentially mineralizable nitrogen. Allocating extra weight in a soil health index to sensitive 

parameters, customized for cropland, can more accurately track changes in soil health and 

therefore optimally benefit farmers participating in soil health management efforts. Ideally, 

Hawaiʻi will be able to better support farmer’s contributing to improvements in soil health by 

offering incentive programs that reward farmers who can prove they are aggrading soil health 

using the developed soil health index. Generally, management practices established to facilitate a 

shift to the left on the soil health gradient should show aggrading soil health scores across all 

indicators over time. Independent of incentive programs and coupled with soil nutrient testing 

and tracking crop yield progress, such recommended management changes can benefit farmers 

by saving them the time and money inefficient management practices and costs of production.  

 

Paradigm shifts of soil health value and outreach 

The extension and outreach efforts in soil health and sustainable ecosystems are an 

ongoing and important effort, particularly for Hawaiʻi as an isolated island chain with limited 

resources and sensitivities to climate change. Efforts in expanding social science applications to 

soil science make the concept of a more self-sufficient Hawaiʻi a realistic goal in the foreseeable 

future, but will require major boosts in sustainability education and interdisciplinary studies that 

directly relate to aspects of culture and perceptions which currently impact and limit improving 

soil health (Appendix A).  
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2.6 CONCLUSION 

 

Sensitive and practical indicators to soil health testing provide a tool to begin measuring 

meaningful changes in the soil ecosystem and will support the next phase of indicator 

development when fine-tuned into unitless scores of soil health. From interpretation of principal 

component analysis (PCA), current and previous management practices demonstrated high 

impact and association to what is understood to represent soil health across biological, physical, 

and chemical soil properties, with soil order acting as a crucial consideration among soil 

differences. Creating an associated gradient from least optimal soil health to optimal soil health, 

managements shifted in the respective order of conventional cropland, unmanaged previous 

intensive agricultural land (UPIAL), organic cropland, pasture land, and protected forest. Nine 

indicators were identified to best detect changes across the gradient of soil health. Determination 

of these indicators used PCA to identify sensitivity to the greatest data variance relating to the 

spectrum of soil health, multicollinearity of indicators measuring similar soil functions, and 

practicality of use. The reduced set of indicators include: water holding capacity, water-stable 

mega-aggregates, percent total organic carbon, C:N ratio, 24 hour CO2 burst, β-glucosidase, β-

glucosiminidase, hot water extractable organic carbon, and potentially mineralizable nitrogen. 

When management group averages were regressed on the gradient of observed soil health from 

PCA, these indicators behaved as expected to represent increasing soil health with shifts in 

management. To our knowledge, this study is the first to examine the sensitivities of soil health 

indicators in Hawaiʻi across soil order and land use and propose the best indicators of soil health 

across landscapes. Going forward, no one soil health test will universally function to predict soil 

health due to high variability among inherent soil properties across Hawaiian soil and goals of 
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index use. The supplemental information of identifying soil health goals (e.g., crop production, 

forestry, grazing animal habitat) and soil taxonomy are crucial to utilize in the application of a 

soil health assessment tool, as well as soil fertility testing as needed within cropland systems.  

Unlike soil taxonomy, there is freedom to adapt and change how a land is managed. 

Since land management is both a major driver of soil health and an aspect of the land that can be 

changed, there is incentive to prioritize soil health improvement by optimizing land use. Thriving 

soil life is at the apex of soil health and its recovery in these landscapes takes a considerable 

amount of time. Intensive agriculture across the majority of arable Hawaiian land has left the soil 

in a state of degradation even when left undisturbed for years or decades. While many land 

managers are prioritizing the improvement of their soil conditions, much of the previous 

intensive agricultural land is left unmanaged with only time to assist in the repair of abused soil. 

With the use of these identified indicators and an accepted initiative to improve soil health, the 

state of soil health in Hawaiʻi can be quantified and policy plans and incentive programs can be 

developed to protect the vitality of soil. Proper management of soil has the ability to reduce the 

expenses of crop production, support watershed recharge, mitigate climate change, and support 

food security in Hawaiʻi. The use of a soil health index is beneficial to all that rely on such 

functions of this precious natural resource. Further experiments from on-site farm trials of soil 

health management practices are necessary to continue the development of a soil health index 

using the proposed list of soil health indicators best suited for routine soil health testing in 

Hawaiʻi.  

The health of soil in Hawaiʻi is not just the concern of land managers for the livelihoods 

of their businesses and organizations. Healthy soil supports effective watershed replenishment, 

clean air, food security, plant disease prevention, and so much more. To quote one land manager,  
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“Right now landscape degradation affects agriculture, but it’s truly everyone’s problem.  

It’ll become every resident’s concern when daily life is impacted, but then it may be too late.”  

 

The establishment of a soil health gradient primarily driven by land management supports the 

efforts of all natural resource managers in Hawaiʻi, be it a rancher, a forest preserve manager, or 

a farmer. It shows opportunity for improvement and connects all land managers to a common 

goal of soil health. The preservation of Hawaiian landscapes is of imminent concern. The 

prioritization of Hawaiian soil as a vital natural resource depends on the collaboration of all 

types of land managers to improve soil health, as a common goal, for the short term benefits of 

their livelihoods as well as the long term benefits of generations to come.   
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APPENDIX A: SUPPLEMENTARY MATERIAL  

A.1 Farmer perspectives and opinions on soil health  

 

The development of resources for improving soil health in Hawaiʻi can be optimized by 

better understanding the needs of the audience. Soil health testing resource developers should 

know the opinions and interests of Hawaiʻi farmers regarding topics such as current and future 

participation in soil testing, and the process of soil management decision making. A series of 

survey questions was completed with eight participating land managers which was designed to 

explore the perspectives associated with soil testing use in Hawaiʻi, as well as collect 

information for future research in potential approaches for improvement. The land manager 

survey consisted of various sections in the form of multiple choice, mental mapping, Likert 

scales, and open response. Due to limited numbers in survey responses the reported information 

is not conclusive, however, it does provide insight to assist in further research on social 

perspectives of soil health in Hawaiʻi.  

Survey contents 

Fuzzy-logic Cognitive Mapping, originally developed by Kosko (1986), was utilized to 

develop an understanding of the relationships among farmer perceptions of soil health and 

management practices via mental modeling. This method quantifies the perceptions of farmers 

which can then be used to further understand soil health management decisions. The portion of 

survey used in mental mapping asked farmers about nine management practices that potentially 

impact soil health. The mental model tool visually displays the quantified farmer perceptions of 

each variable’s impact (land management practice) on overall soil health and reports the 1) 

existence of a relationship, 2) if it is a positive or negative relationship and 3) the strength of 
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relationship (Gray et al., 2014, Halbrendt et al., 2014). Participants also answered questions via a 

likert scale to quantify their opinions of soil health testing and resources in Hawai'i and were 

organized by average scores for each question regarding strength of agreement and then 

calculated as a total overall percent agreement for the group. Open responses were compiled and 

are reported as a summary of the information received. A total of seven surveys were completed. 

Perspectives of soil health 

The perceptions of the survey participants of the soil health suggest that these farmers are 

aware of what soil characteristics constitute a functional and healthy soil (Figure A.1). 

Management practices known to aggrade soil scored positive associations to soil health, while 

those known to degrade soil conditions scored negative. One practice, adding fertilizer, scored 

neutrally. These findings, provided a small size of participants, could suggest that education of 

soil management practices supporting soil health is not a main concern for improving soil health 

management with Hawaiian farmers. Rather, there are perhaps other conditions preventing such 

soil health management transitions such as lack of resources or labor. To improve this model, the 

sample size needs considerably greater participants as well as a follow up interview regarding 

what limits the use of sustainable agriculture practices. 
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Figure A.1 Mental mapping of farmer perspectives on soil management practices impact on soil health. 

The existence of an arrow represents there is a relationship, which are then marked as positive or 

negative.  

  

Opinions on soil management  

Overall, farmers agreed soil health was important to them (97%) and soil testing is 

valuable (89%) as well as interest in adapting farm management practices to improve soil health, 

interest in testing soil health regularly, and interest in an online resource to help manage soil 

health (all 91%). Opportunities of improvement are: increasing the quality of resources available 

to farmers looking to improve soil management (74% of farmers agreed there is conflicting 

advice from soil health agencies/extension groups), and developing the scope of education and 

understanding of interdisciplinary potential of land uses regarding soil health (69% of farmers 

agreed agencies/extension groups concerned with soil health fail to understand landholder 

objectives). On average, the survey participants reported that $90 is a fair and reasonable price 

for a complete annual soil health test.  
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Conclusions 

Improvement of resource quality available to Hawaiʻi growers, such as where to find the 

most accurate soil health info online, how and when to test soil health, and who to consult for 

help with management changes, could be helpful steps in improving state sustainability. While 

most farmers surveyed appear to understand what constitutes a healthy soil, it appears they are 

lacking support to make changes. Recommended next steps to better connect and apply soil 

science with the Hawaiʻi farmer audience are to develop and market reliable soil health testing, 

identify ways to better integrate farmer values into collaborating decision-making positions in 

science, government, and outreach personnel, and provide concise Hawaiʻi-specific management 

strategies for improving soil health and plant disease.  
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APPENDIX B: MAPS  

A.2 Areas of soil collection on Maui, Molokai, and Oahu with soil order overlay 

 

Site marking symbols represent all sites in the general area, and are not specified to the detail of 

each exact site to protect the privacy of participating farmers.  

 

Figure A.2.a Map of sites on Oahu. 
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Figure A.2.b Map of sites on Molokai. 

 

Figure A.2.c Map of sites on Maui.  
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APPENDIX C: DATA TRANSFORMATION 

A.3 Untransformed and transformed data in PCA for confirmation of non-normality  

 

Figure A.3.a The initial PCA using untransformed data.  The uneven distribution of data (with clear 

outliers 52-54) in the 2D output as well as high skewness values of some indicators suggested the need to 

transform data for normality.  
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Figure A.3.b The final PCA using variables transformed for optimal normality which showed an 

improved graphical display regarding spatial distribution of plots and outlier assessment as well as 

reduced skewness values.  
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APPENDIX D: DATA SUMMARIES 

A.4 Site data summaries with the proposed soil health indicators by soil order  

 

Site parameter values are the average of the three pseudo field reps, with standard error in 

parentheses next to each value.  

 

Table A.4.a Mollisol data for selected indicators.  

 

 

Table A.4.b Oxisol data for selected indicators.  
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Table A.4.c Vertisol data for selected indicators.  

 

 

 

Table A.4.d Ultisol data for selected indicators.  
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Table A.4.e Andisol data for selected indicators.  

 

 

Table A.4.f Inceptisol data for selected indicators.  
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APPENDIX E: PCA ABBREVIATIONS 

A.5 Soil parameter codes in PCA as potential indicators of soil health  

Table A.5 A list of all potential indicators selected to be meaningful measurable parameters relating to an 

assessment of soil health for Hawaiʻi.  
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