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Abstract

The increasing prevalence of cyber-crime has led
to a surge of new forensics tools aimed at collecting
digital evidence from a suspect’s computer. A suspect’s
hard drive can be the largest source of collected
information, but the task of collection can be made
significantly more difficult when the contents of a hard
drive are deleted or damaged. In these circumstances
the information needed to read files normally may be
missing, leaving only the raw, often fragmented, data
behind. If we were able to reliably reconstruct files
from this raw data, then it would be more difficult
for suspects to destroy potential evidence. In this
paper, we focus on the reconstruction of an image
from a set of fragments. This research contributes
a novel image reconstruction method which utilizes
pre-stitch data extraction on individual data sectors.
We show that, when certain attributes are successfully
extracted from the data sectors, this method yields a high
reconstruction accuracy even when used with a naı̈ve
stitching algorithm on heavily fragmented image files.

Keywords: image reconstruction, image forensics,
image attribute estimation, stitching

1. Introduction
As cyber-crime continue to become more pervasive,

it remains critical that forensics investigators can
reliably collect digital evidence for use in these cases.
The term digital evidence can refer to evidence collected
from many different sources, but one particularly large
source of digital evidence is a suspect’s hard drive
(Casey (2011)). In some circumstances, however, it
is possible that the suspect has deleted, corrupted, or
otherwise damaged a hard drive in such a way to make
accessing the data normally impossible. Although the
data may no longer be accessible through a file system,
it may still be possible to extract files from these drives
using a technique called file carving. File carving is
the process of scanning a hard drive’s raw data with
the goal of reconstructing the contents of individual

files from the disk without relying on the underlying
file system (Poisel and Tjoa (2013)). This process
is made significantly more difficult when the disk’s
data is fragmented, meaning a single file is saved in
sections at non-continuous locations across the disk.
Reconstructing these files requires the use of special
algorithms which will henceforth be referred to as
stitching algorithms (Casey (2011)).

Because end-to-end file carving can be a lengthy
process, this paper will focus solely on the final stages of
file carving. We assume that through previous methods,
sectors have been clustered together based on which
images they belong to, and that RGB information is
available for each sector. These are safe assumptions
to make, as research has already been done surrounding
the clustering and classification of file fragments (Ali
and Mohamad (2021) and Tsamoura and Pitas (2009)),
and RGB information is readily available for image
types like BMP (Microsoft (2021b)), some raw formats,
and even JPEG (Sencar and Memon (2009)). We
also assume that the bit depth of the target images
will be divisible by 8, allowing us to consider only
a whole number of bytes as potential pixels. This
is to reduce the complexity of the implementation
of the proposed algorithm by allowing us to avoid
manipulating individual bits for comparisons. This
change only reduces the complexity of a single stage in
the pipeline and has little impact on the function of the
algorithm as a whole. Our testing data will consist of
sets of completely scrambled image fragments stored as
raw RGB data. Reconstructing raw RGB data allows
the resulting algorithm to be generalized to any file
format where RGB data can be extracted, as mentioned
previously. Raw RGB data is also extremely similar to
24-bit color BMP files, which were used by Pal et al.
(2003) to test their reconstruction algorithm. The only
difference between the two formats is the lack of a
54-byte header at the beginning of each file, and lack of
0-3 bytes of padding at the end of each scanline (Memon
and Pal (2006) and Microsoft (2021b)).

A major difference between our proposed algorithm
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and existing solutions is the fact that our algorithm
considers each sector as an individual fragment
regardless of its neighbors. This differs from existing
algorithms which operate around large fragments
of image data stored across many continuous
sectors (Memon and Pal (2006), Pal et al. (2003),
and Tang et al. (2016)). By focusing our algorithm on
reconstructing from individual sectors, we can create a
robust method against small image fragments, missing
or damaged sectors, and heavily fragmented images.

2. Background
In this section, we describe the process of file

fragmentation and specific vocabulary like byte depth
and sectors.
Byte Depth. The more common term bit depth is
the number of bits per pixel a specific file uses to
store an image (Microsoft (2021a)). For simplicity, this
paper focuses only on those images whose bit depth is
divisible by 8, so, we will be referring to this attribute as
byte depth. Because there are exactly 8 bits in a byte, an
image with a bit depth of 24 can be said to have a byte
depth of 3. The term byte depth will be used extensively
throughout this paper and will always refer to the bit
depth of an image divided by 8.
Sector Size. The sector size of a disk is simply the
smallest amount of data that can be read or written to
the disk at a single time. This amount is measured in
bytes and is typically a power of two ranging from 512
to 4096 (Garfinkel (2007)).

Figure 1: How seven continuous 512-byte sectors are
positioned relative to each other in an image with a
width of 1092 bytes

Width Offset. Width offset is a non-standard term
which is used throughout this paper for lack of a more
suitable alternative. It refers to the staggered nature of
sectors when viewing their positions in a 2-dimensional
image. This staggering results from a mismatch between
the width of the image and the sector size, which can
be seen in Fig. 1. More specifically, it refers to the
number of bytes that vertically-neighboring sectors are
offset by relative to one another. If the width of the
image, measured in bytes, is not evenly divisible by the
sector size, then subsequent lines will be offset by the
remainder. In Fig. 1, the width offset can be said to be
either +444, or -68, but to reduce complexity, offsets will
be limited to half of the sector size in the positive and
negative direction. In the above example, this leaves the
width offset to be -68 bytes.

File Fragmentation. A file becomes fragmented when
it is saved in pieces to non-continuous locations on a
hard drive (Sari and Mohamad (2020)). This process can
be seen in Fig. 1, where file sectors are being saved to
the drive at the first available locations. Fragmentation
can also occur if data is appended to the end of a file, or
if the operating system itself places constraints on how
files can be saved (Garfinkel (2007)). The former can be
seen in Fig. 2, and the latter can be seen in Fig. 3.

Figure 2: The process of file fragmentation as a result of
deleting and creating files of varying sizes

Figure 3: The process of file fragmentation as a result of
an existing file growing in size to fill an existing space

Natural Image. A natural image is any image which
has high spatial covariance (Lythgoe and Partridge
(1989)). For example, pictures taken of a real-life
scene using a digital camera will yield an image where
neighboring pixels are highly similar, making them a
better candidate for content-based image reconstruction.
This is in contrast to artificial images which are
generated or modified on a computer and can have
abrupt content changes.
3. Related Work

The problem of image reconstruction is typically
approached as an ordering problem which seeks to
minimize the distance between the boundaries of
sequential sectors (Memon and Pal (2006), Pal et al.
(2003), Pal et al. (2008), and Tang et al. (2016)). In
these approaches, it is often the distance metric or
specific ordering algorithm which is modified. Methods
that utilize this technique are susceptible to error when
input images have sudden changes in content, such
as the sharp edge of a building against a clear sky,
as mentioned by Tang et al. (2016). These methods
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perform poorly under these conditions due to their
heavy reliance on a small number of pixels directly
adjacent to sector boundaries. This work hopes to
avoid this problem by comparing sectors vertically,
thus allowing for sectors to be compared along their
entire length. This comes with a host of other
challenges, which will be discussed in detail within
the methodology section. Pal et al. (2003) utilize a
graph-based approach for the ordering algorithm and
compare their results with a greedy alternative, similar
to the ordering method used in this paper. They
concluded that greedy approaches perform well despite
their simplicity, but still provide a lower reconstruction
accuracy verses a more thorough graph-based approach.
Another graph-based approach is used by Memon and
Pal (2006), however they are attempting to stitch large
fragments directly on top of one another instead of
horizontally. The same stitching technique is used
by Tang et al. (2016), who proposed a new metric
for evaluating potential fragment stitches. Both of
these methods rely on large continuous fragments as
well as prior knowledge of the image width. The
width information was obtained from header fragments,
but this technique limits the stitching algorithm to
only growing from header fragments because of their
known widths. There are several methods that aim
to classify file fragments based on file types (Chen
et al. (2018)). These methods attempt to extract
high-level features from the file fragments, which can
be useful for deciding how similar a pair of fragments
are. While these methods focus on differentiating file
types, they could be adapted cluster image fragments
based on the images that they originated from. Chen
et al. (2018) even convert various file fragments into
images before classifying them. Tang et al. (2016)
demonstrate a new algorithm for scoring potential
fragment stitches together. They show how their
method greatly out-performs commonly used methods
like Euclidian Distance and Sum of Differences. Their
algorithm utilizes a second scanline of pixels from the
image, which requires extra knowledge about the image
such as the width. This method would also not be suited
for particularly small fragments.

Karresand et al. (2019) work to improve the
efficiency of existing file carving algorithms by showing
that portions of a disk’s NTSF partitions can be
prioritized by creating a probability map of finding
unique data across the partition. The methods
mentioned here are aimed at either clustering fragments
based on content or improving efficiency of existing
file carving methods. Accurate clustering methods
would provide a more robust input to the proposed
pipeline, and more efficient reconstruction methods

would decrease the time required to stitch sectors in one
of the pipeline stages. These methods alone, however,
still share the same shortcomings of the traditional
carving algorithms that they are improving.

4. Methodology
The goal of this research is to develop an algorithm

which accurately reconstructs an image from a set of
scrambled fragments by utilizing meaningful image
attributes extracted prior to the final reconstruction. The
proposed algorithm will be split into four major stages.
The purpose and implementation of each stage will be
described in Section 4.1 and 4.2 respectively.
4.1. Algorithm Pipeline

This section will detail the four major stages of
the proposed pipeline. For each stage, we discuss
what information is gained and how that information
can be used either towards future stages or for the
final reconstruction. This can be seen in Fig. 4,
which outlines each of the four major stages as well
as the information gained after each step. As we
can see, the proposed algorithm will alternate between
attribute extraction and sector stitching until the final
reconstruction is complete. As input, the algorithm will
take in a set of sectors collected from an image and
scrambled. The reconstructed output will be in the form
of a single image file with the BMP file format.

Figure 4: The four stages of the proposed algorithm
pipeline, including what is gained at each stage

Stage 1: Attribute Extraction (1). The goal of the first
attribute extraction phase is to determine the byte depth
and width offset of the source image (see Fig. 4). These
two attributes are crucial for discovering the values of
future attributes, most importantly the true width of the
source. The byte depth can be used to estimate the width
by narrowing down the number of possible widths of
the image. This can be done by only considering those
widths which divide evenly by the byte depth, since a
scanline of an image must end at the boundary between
two pixels. Similarly to the byte depth, the width
offset can also be used to reduce the number of possible
widths. By definition, the width offset is the sector size
minus the number of bytes from a single sector which
overflow onto the next scanline. This means that the
width (in bytes) of the image must be the width offset
plus some whole number times the sector size. This is
detailed further in the Stage 3 of the implementations
section but means that the total number of possible
widths can be reduced even further to only those widths
that match the stated equality. The width offset has an
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additional purpose, in that it allows us to only compare
sectors at that specific offset when performing sector
ordering. Since all sectors share the same offset relative
to their neighbors, as shown in Fig. 1, there is no need to
compare sectors at any other offset. This dramatically
reduces the amount of comparisons needed between
sectors by a factor of the sector size. This fact will be
relevant to the implementation of Stage 2 of the pipeline.
Stage 2: Sector Stitching (1). Stage 2 of the pipeline
focuses on vertically ordering, or stacking, the input set
of scrambled sectors. This is the main reconstruction
step and determines the order of sectors vertically in the
output image. The goal is to order the sectors in such
a way that the sum distance between adjacent sectors is
minimized, which is the same problem as The Traveling
Salesman problem (Black et al. (1998)). This ensures
that the content of each sector is as similar as possible to
its closest neighbors, which is, as previously described,
an attribute of natural images. Shown in Fig. 5 is one
possible stacking order of the sectors present in Fig.1.
We call this ordering perfect because each sector has
the correct neighbor. There are multiple perfect ways
to order the sectors vertically, which will be discussed
in more detail in the Stage 3 section.

Figure 5: A series of sectors stacked on top of one
another. The stack shown is one of two possible perfect
stackings of the sectors shown in Fig. 1
Stage 3: Attribute Extraction (2). The goal of this
step is to determine both the width of the true image as
well as the orientation of the sector stack generated in
Stage 2. The incoming sector stack will also be split
into multiple smaller stacks, which represent vertical
strips of the image (see Fig. 6). The width of the image
is a critical piece of information that is required for
generating the final image file. Additionally, knowing
the width of the image also allows us to roughly
calculate the height based on how much data is present.

Splitting the sector stack incoming from Stage 2
is necessary for creating the final reconstructed image
because the smaller stacks must be placed next to one
another to create the final 2-dimensional image. This
placement is done in Stage 4 and is the final step of
reconstruction. Each smaller stack represents a vertical
slice of the image, where no slice contains sectors that
overlap more than 50% of any sector from another
slice. Shown in Fig. 6 are the vertical slices of the
image showed in Fig. 1. These two smaller stacks were
obtained by splitting the single stack shown in Fig. 5

between the purple and orange sectors. There is another
orientation that Stage 2 could have produced, and that
would be the orange, green, and blue sectors stacked
on top of the pink, yellow, blue, and purple sectors.
This would be another perfect stacking of the example
sectors, as an alternative to the stack shown in Fig. 5.
Stage 3 should produce the same output regardless of
which variation is generated by Stage 2.

Figure 6: How the sector stack can be split into two
separate sector stacks, each representing a vertical strip
of the original image

Stage 4: Sector Stitching (2). The final stitching
step will involve ordering the individual sector stacks
horizontally to create a 2-dimensional image. The
output of this process can be seen in Fig. 7. It is then
a simple matter of writing the sectors to the image file
from left to right, top to bottom. Even though the output
in Fig. 7 does not appear square, written as raw data to
an image file will produce a square image.

Figure 7: Sector stacks stitched horizontally into a 2D
image
4.2. Implementation

In this section, we cover the specific implementation
details for each stage in the reconstruction pipeline.
Each stage is broken up into parts based on the discrete
operations included in this stage (see Fig. 4). Included
for each implementation is the goal, specific function
to be optimized in the proposed solution, and possible
alternatives.
Stage 1 - Attribute Extraction (1). Byte Depth
The byte depth of an image can be determined very
confidently by analyzing the frequencies of neighboring
bytes. As described by Lythgoe and Partridge (1989),
natural images contain high spatial covariance, meaning
neighboring pixels will typically have similar colors.
This fact can be leveraged to discover how many bytes
are used to represent each pixel by testing various byte
depths to discover the one which yields the highest
covariance between neighboring pixels. Other methods
that could discover the byte depth would be a Fourier
transform, or a similar auto-correlation operation. These
methods need only test a small set of common byte
depths like 2, 3, 4, and 6 (Microsoft (2021a)). Width
Offset: Our implementation of the width offset estimator
utilizes a two-step process. The first step determines
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a small set of sector pairs, where sectors in a pair are
close to each other. Then, the optimal width offset
for each pair is found and cataloged. The width offset
with the largest number of occurrences is selected as the
width offset. As mentioned, the first step is to obtain
a set of sector pairs, where the sectors in each pair are
spatially close to each other. This was necessary in our
implementation to reduce the number of comparisons
needed to brute-force an optimal width offset during the
next step. We can dramatically reduce the number of
comparisons by first utilizing this rough distancing step.
There are many options to choose from for this step, but
our implementation utilizes a Fourier transform in order
to compare the similarity of component frequencies
for each sector. This has the advantage of being
largely position-independent (the horizontal position of
a feature can be discarded) while still maintaining high
dimensionality. Many other vectorization functions
could replace the Fourier transform in this step. Simple
examples would be variance, entropy, or average color.
Alternatively, the outputs of clustering models similar
to Chen et al. (2018) and McDaniel and Heydari (2003)
could be re-used here for free if that algorithm was
already used to obtain the list of image sectors to
begin with. For each pair in this set, the offset
which minimizes the Euclidian distance between the two
sectors is logged. Once this is completed for all selected
pairs, the offset that obtained the highest frequency is
selected as the width offset. This process is formally
defined by maximizing the below function F for o, where
S is the sector size, o is a given offset, and n is the
number of pairs selected. P is a pair of sectors who have
been determined to be spatially close by one another
based on the rough distance function discussed in the
previous step.

G(A,B, o) =

S−o∑
i

(Ai+o −Bi)
2

F (o) =

n∑
i

MIN(G(Pn,1, Pn,2, o), G(Pn,2, Pn,1, 0))

To reduce complexity, the absolute value of the
width offset is used through the remainder of the
algorithm. Ignoring the sign of the offset has the effect
of flipping the image vertically. Ignoring the sign of the
offset benefits this step because it allows us to ignore
which sector in the pair is on top, since we are just
interested in the relationship between the two. This
would be a problem for the final reconstruction, but there
is no guarantee that the image will be reconstructed in
Stage 2 in the correct orientation to begin with. This
means that the orientation correction in Stage 3 will need
to be done regardless, so there is no harm in discarding
the sign of the offset in this step.

Stage 2 - Sector Stitching (1). Sector Stacking The
goal of sector stacking is to order the sectors vertically
in such a way that the sum distance between neighboring
sectors is minimized. Our algorithm utilizes a greedy
approach, and simply stitches the current closest pair of
sectors until all have been stitched. This is the costliest
portion of the algorithm, with a time complexity if
O(n3) relative to the sector count. We only require
one comparison between each sector, since each sector
is compared only at the width offset calculated in
the previous step. The function G, mentioned in the
previous section, is used as the comparison function in
this step where o is set to the width offset previously
determined by Stage 1. There are algorithms that can
perform this task in shorter time, such as finding the pair
of closest points in O(n · logn) time as demonstrated
by Shamos and Hoey (1975), but the efficiency of the
implemented algorithm, while considered, was not the
primary focus of this work.
Stage 3 - Attribute Extraction (2). Width Estimation
The goal of width estimation is to determine the true
width of the original image. This can be done using
the byte depth, width offset, and the stack of sectors
obtained in the previous stage. Because a scanline
must end on the boundary between two pixels, we can
greatly reduce the number of possible widths to only
those where some multiple of the sector size plus the
width offset are a whole multiple of the byte depth.
The minimum width of the image can be discovered by
satisfying the equality below where S is the sector size,
o is the width offset calculated previously, d is the byte
depth, and n is some positive integer.

0 = mod(nS + o, d)

After determining the smallest value for n which
satisfies the equality, the minimum width is defined by
the equation bellow. Because we don’t know whether
the stack is upside- down or not, two possible minimum
widths must be calculated using both the positive and
negative values of the width offset, o. As previously
mentioned, using a negative value for o has the effect
of flipping the stack vertically during the final stitching
step. If S is larger than the true width, a larger multiple
of the true width will be discovered instead.

minimumWidth = nS + o

By discovering the minimum width, we also
discover all possible widths of the image. The true
width of the image must occur at a position where Sx
is divided evenly by the d where x is some positive
integer. This will yield a set of potential widths that can
be evaluated in the next step. Once the minimum width
and width interval are both determined, all possible
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widths beginning at the minimum width and ending at
the number of bytes in the data will be tested using the
function H, shown below, where S is the sector size, n is
the number of sectors, w is the width to be tested, and m
is the squared difference between pixels along a vertical
line in the sector stack at the x offset of i.

H(w) =

Sn−w∑
i

mimi+w

The rationale behind this approach is that the
sector stack will contain regular breaks where several
neighboring sectors reach the end of a scanline, creating
a distinct vertical line in the image content on sector
stack. These vertical lines will occur at intervals
matching the true width of the image. Examples of this
can be seen in Fig. 8. By testing all possible widths,
we can select the width which yields the largest sum
difference at these intervals.

Figure 8: A vertical break in content where one scanline
ends and another begins within the sector stack. Image
is taken from a sector stack generated using the proposed
algorithm

Image Orientation The sector stack created in Stage
2 has the potential to be upside down relative to the true
orientation of the image. This portion of the algorithm
is dedicated to determining whether the sector stack
should be flipped vertically or not (i.e. if the negative
version of the width offset should be used or not). This
process corrects for using the absolute value of the width
offset, as mentioned in the Stage 1 implementation
section. When discovering the width in the previous
step, two sets of width increments were tested: one for
the positive width offset and one for the negative and
we selected the width based on which width yielded
the maximum value of function H. The width that was
selected will be associated either with the positive or
negative width offset which will tell us the orientation of
the sector stack. Examples showing the stitching for an
upside-down stack are shown later in the results section.
Stage 4 - Sector Stitching (2). The goal of this
step is to split the single continuous stack of sectors
generated by Stage 2 into multiple stacks. These stacks
represent the multiple vertical strips of the image which
will be combined to create the final two-dimensional
image. The number of vertical strips necessary is
relative to the width of the image as well as the sector
size. The number of strips needed to fill the image is
simply calculated by dividing the suspected width of the
image by the sector size, yielding how many sectors are

needed to fill the image horizontally. This is the same
number n which is used in the equality shown previously
in the width estimation implementation section. The
height of the image can then be calculated roughly by
dividing the total number of sectors by the number of
sectors needed to fill the width. This calculation should
almost always yield a decimal number slightly over
the true height, since the last sector of the image is
most likely not completely filled with image data. The
only circumstance that this wouldn’t be the case is if
the width divided evenly by the sector size. For this
reason, the calculated height is floored to the nearest
integer. The sector stack is then split at intervals of
approximately this height to generate the vertical strips
needed to reconstruct the two-dimensional image. A
buffer of one scanline up or down is added, and the
stack is split between the pair of sectors with the largest
Euclidian distance among the three possibilities. The
reason for this is that a vertical strip may not be exactly
the calculated height due to the wrap- around nature of
the sectors at the edges of the image, so the best location
within a scanline is selected. The Euclidian distance is
maximized here because we are looking for the location
where the bottom of a vertical slice of the image meets
the top of a vertical slice. This will hopefully lead
to a large difference in content resulting from the vast
difference in location between the sectors. An example
of such a horizontal break can be seen in Fig. 9.

Figure 9: A horizontal break in content where sectors
from the bottom of a vertical slice of the image meet
sectors from the top of another vertical slice. Image is
taken from a sector stack generated using the proposed
algorithm

5. Experimental Evaluation
This section will show how the proposed algorithm

performed on the selected data set. The images from
the dataset were run through the proposed pipeline
with accuracy measurements being taken for byte depth,
width offset, width, and orientation. Results will first be
shown and discussed regarding the entire pipeline, then
broken up to show how each individual stage performed,
independent of previous stages.

The accuracy function A is defined below, where s is
the number of sectors in the original image and i is the
number of inversions required to transform the output
reconstruction into the original image.
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Figure 10: The relationship between the number of sectors in an image and the reconstruction accuracy

A(i, s) = 1− 2i

s(s− 1)

5.1. Dataset
Due to the scope of this work, existing file carving

datasets would not be suitable for testing the proposed
algorithm. Many existing datasets have a focus on
differing file types (“NIST, Forensic Images for File
Carving” (2021)) and are made to test the capabilities
of a fully implemented file carver. As previously
mentioned, our work is intended for the later stages of
carving and can be tested only on single images which
require reconstruction. The dataset used to test the
proposed algorithm consists of 1032 images of various
types of flowers (Nilsback and Zisserman (2020)). All
images included in this dataset are natural images
taken with a camera. This is in contrast to images
that may have been digitally created or manipulated
using software. These images also often included large
patches of low-noise data, such as clear sky, which
provides an additional challenge for sector matching.
The raw RGB values for each of these images was
extracted then divided into sectors of 512 bytes each.
This is the smallest sector size commonly found on
hard drives (Garfinkel (2007)) and provides the greatest
challenge for reconstruction. The sectors belonging to
each individual image were scrambled independently of
other images, resulting in 1332 individually scrambled
images. Both the code1 as well as the dataset2 used are
publicly available.
5.2. Complete Pipeline Results

Results for the complete pipeline can be seen in
Column 1 of Table 1. We can see that the algorithm
accuracy is 76.76% on average across all 1332 images
in the data set. A total of 344 of the original 1332

1Link removed for anonymized submission
2https://www.robots.ox.ac.uk/ vgg/data/flowers/17

tested images were able to be fully reconstructed with
an accuracy of 100%, as can be seen in Column 5.

Table 1: The reconstruction accuracy for various
portions of the pipeline

Complete Stage 3-1 State 3-2 Stage 3-3 Ideal

Images 1332 899 825 825 344
Sectors/Image 1870.48 1844.80 1850.56 1850.56 1830.38
Milliseconds/Sector 6.66 6.45 6.49 6.49 6.42
Byte Depth Accuracy 100.00% 100.00% 100.00% 100.00% 100.00%
Width Offset Accuracy 67.49% 100.00% 100.00% 100.00% 100.00%
Width Accuracy 61.94% 91.77% 100.00% 100.00% 100.00%
Orientation Accuracy 79.50% 95.44% 100.00% 100.00% 100.00%
Reconstruction Accuracy 76.76% 89.30% 92.89% 92.89% 100.00%

The decreasing average number of sectors in each
column and the increasing reconstruction accuracy
could encourage the assumption of a negative
correlation between the two, but Fig. 10 shows
how the number of sectors present in an image does
not appear to largely impact the performance of the
reconstruction algorithm. If there was a negative
correlation between the two, as potentially indicated by
the decreasing sector count as accuracy increases, we
would expect to see a clear downward trend in Fig. 10.
5.3. Stage 1 - Attribute Extraction (1)

Stage 1 focused on determining the byte depth and
width offset of the source image. The results for both of
these attributes can be seen in the Column 1 of Table 1,
but each will be discussed in detail within this section.
Byte Depth. We can see that the byte depth of all
1332 images was correctly determined, indicated by the
accuracy of 100%. This high accuracy is to be expected,
since there are a very limited number of possible byte
depths, as described in section 4.2. It is important to
note, however, that the dataset consisted of only images
with a byte depth of three bytes as a result of the file
format used in the dataset.
Width Offset. As seen in Column 1 of Table 1,
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(a) Original Image

(b) An image which was 
reconstructed using the 

incorrect width

(c) A reconstructed image 
which used an incorrect width 

offset.

(d) An image which was 
reconstructed using the 

incorrect orientation

Figure 11: Original image and incorrect stitching results

the width offset was correctly determined in 67.49%
of the 1332 tested images. We can see what happens
to an image which is reconstructed using an incorrect
image offset in Fig. 11.c. Note how the original image
can somewhat be seen within the individual vertical
strips (these are the sector stacks mentioned in Stage
4 of Section 4.2), but the strips are color shifted and
miss-aligned. The color shift here is caused by sectors
being offset incorrectly by a factor indivisible by the
number of bytes used per pixel. This leaves some lines
of the image to start in the middle of a pixel, leading to
a miss-representation of the different color channels in
the reconstructed image.

The major cause of incorrect offset estimations can
be deduced from Figures 10, 11.c, and 12. Fig. 13
shows how the ideal offsets for the selected pairs of
this particular image are distributed much more evenly
across the possible offsets when compared to image used
for Fig. 12. This could indicate that either the method
used for selecting the ideal offset between two pairs is
failing, or that the vectorization algorithm used to select
close pairs is selecting sectors that are non-neighboring.
We can confirm that it is the latter by looking at Fig. 14,
which shows how the accuracy of the pairing algorithm
significantly declines as the true width offset increases.
Fig. 14 also shows that, when the pairing algorithm
performs well, the ideal offset is able to be determined
with little issue.
5.4. Stage 2 - Sector Stitching (1)

This stage of the pipeline attempted to stitch the
sectors into a single continuous stack. Results for
this portion of the pipeline were not isolated for lack
of a meaningful performance metric. Stage 2 and
Stage 4 both utilize the same greedy stitching algorithm

Figure 12: The frequency of ideal offsets between pairs
of sectors in an image whose width offset was correctly
determined. In this case, the correct offset was 19 which
is shown as the large spike to the left of the graph. The
number of pairs evaluated was equal to 30% of the total
number of sectors, in this case 605 pairs

Figure 13: The frequency of ideal offsets between pairs
of sectors in an image whose width offset was not
correctly determined. In this case, the correct offset was
202. The number of pairs evaluated was equal to 30%
of the total number of sectors, in this case 659 pairs

described in Stage 2 of Section 4.2, and both largely
effect the final order of the sectors in the reconstructed
image. For these reasons, they will both be evaluated
when discussing the final reconstruction accuracy in the
Stage 4 Results section.
5.5. Stage 3 - Attribute Extraction (2)

Stage 3 of the pipeline focused on extracting the
width and orientation of the original image, described
in Stage 3 of Section 4.1. The importance of correctly
estimating the width and image orientation can be
seen in the improved reconstruction accuracy between
Column 2 and Column 3 of Table 1.
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Figure 14: The relationships between the true width offset of a target image, the correctness of the extracted width
offset, and the accuracy of the vectorization algorithm used to select close pairs. While it may appear that there are
fewer Correct (green) points than Incorrect (red) points, this is simply because the Correct points are spaced much
closer. Correct points make up 67% of the points shown on the figure, while Incorrect points make up the remaining
33%. Pairing accuracy, shown on the Y-axis, is the percent of pairs selected for the width offset estimation for a
particular image were truly neighbors

Width. The goal of this step was to use the width
offset estimation in combination with the byte depth
and sector stack to estimate the true width of the
image. Because this process uses the width offset, if the
offset is determined incorrectly then the estimated width
will also be incorrect. Of the 1332 reconstructions,
there were no instances of the incorrect width offset
yielding the correct width. When considering just
those reconstructions which accurately predicted the
width offset, the width was calculated correctly 91.77%
of the time, as seen in Column 2 of Table 1. An
example of how an incorrect width affects the resulting
reconstruction can be seen in Fig. 11.b. In this case, the
width used for reconstruction was smaller than the true
image width. The image appears to be duplicated twice
vertically, but these two halves are simply two different
sets of neighboring sector stacks which are no longer
interleaved with each other.
Orientation. As seen in Column 3 and Column 4
of Table 1, the accuracy of the orientation estimation
is largely dependent on the accuracy of the width
and width offset estimations. This is to be expected,
since the orientation is determined using the suspected
width of the image, as described Stage 3 of Section
4.2. The orientation is an important feature to
determine correctly, because, unlike many of the other
attributes, the reconstructed image will be completely
unrecognizable if the incorrect orientation is used. An
example of an image reconstructed using the incorrect
orientation can be seen in Fig. 11.d.

5.6. Stage 4 - Attribute Extraction (2)
The goal of this stage was to reconstruct a

2-dimensional image using the width, orientation, and

split sector stacks as described in Stage 4 of Section
4.2. As can be seen in Column 3 and 4 of Table 1, this
stitching step was able to produce an average accuracy
of 91.77% when all other attributes were correctly
determined. This indicates that the greedy stitching
approach works reasonably well.

6. Conclusion
The goal of this paper was to demonstrate the

viability of a novel method for image reconstruction
from completely scrambled fragments. We succeeded in
showing that particular attributes such as image width,
byte depth, and orientation can be determined using raw
image data from the sectors, and that these attributes
can be used to accurately reconstruct the source image.
The utilization of this algorithm would allow image
carvers to handle very small file fragments and heavily
fragmented image data, as well as potentially allowing
carvers to elegantly handle corrupted or missing sectors.
This is possible because the proposed algorithm is able
to treat individual sectors as independent from their
neighbors. While direct comparisons cannot be made
with existing tools due to the problem’s scope, this
work demonstrates that further research in this direction
would be worthwhile. With some changes to the
underlying algorithms, namely the sector vectorization
method described in Stage 1 of Section 4.2 for reasons
discussed in Section 5.2, the proposed pipeline could
reach accuracies well over 90% as shown by the final
column of Table 1.
Discussion. The methods proposed for extracting
the various attributes are crude and un-optimized
but provide a basis for future work. Each method
for extracting specific attributes can potentially be
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improved independently of other methods, meaning
there are many opportunities for both efficiency and
accuracy improvements. Similarly, the reconstruction
algorithm itself is largely unoptimized. Our greedy
implementation performs faster than a graph-based
approach, but this potentially affects the accuracy of
our reconstructions. That said, our results using a
greedy algorithm performed reasonably well, and there
is no guarantee the significantly increased runtime for
a graph-based approach would yield significantly better
reconstructions (Pal et al. (2003)).
Future work. A major benefit of this algorithm which
was not pursued in this work is the ability to reconstruct
images with corrupted or missing fragments. This is
because the algorithm does not rely on the horizontal
similarity between two neighboring sectors. If sectors
are being stitched together horizontally, the gap between
two sectors with a shared missing neighbor would be
equal to the sector size. In a best-case scenario this
would be a gap of 512 bytes. However, stitching
sectors vertically, a missing sector would result in only a
single-pixel gap between sectors with a shared missing
neighbor. This significantly boosts the algorithm’s
ability to match sectors and can provide the ability
to closely compare sectors that have many missing
neighbors. Testing was limited to only images who
were able to be fully reconstructed, but it would be
unrealistic to assume this would always be the case
when sectors are probabilistically clustered. We have
already discussed how our current implementation could
handle missing sectors.
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