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Abstract

In non-contractual freemium and sharing economy
settings, a small share of users often drives the largest
part of revenue for firms and co-finances the free
provision of the product or service to a large number
of users. Successfully retaining and upselling such
high-value users can be crucial to firms’ survival.
Predictions of customers’ Lifetime Value (LTV) are
a much used tool to identify high-value users and
inform marketing initiatives. This paper frames the
related prediction problem and applies a number of
common machine learning methods for the prediction
of individual-level LTV. As only a small subset of users
ever makes a purchase, data are highly imbalanced.
The study therefore combines said methods with
synthetic minority oversampling (SMOTE) in an attempt
to achieve better prediction performance. Results
indicate that data augmentation with SMOTE improves
prediction performance for premium and high-value
users, especially when used in combination with deep
neural networks.

1. Introduction

Freemium is the dominant pricing model for
digital products: A basic version of the product or
service can be used for free and premium upgrades
are available against payment of a fee. Contractual,
subscription-based freemium models are widespread
and e.g. used by Dropbox, Spotify and many providers
of digital news. Here, customers upgrade a single
time to a premium plan and then pay in monthly
installments. Some firms, e.g. Tinder, extend their
contractual upgrades with ad-hoc, non-contractual
premium offers that allow for repeat purchasing at the
customers’ discretion. Purely non-contractual freemium
models are common in products with large network
effects such as Skype, many dating and lifestyle apps,
and in digital (free-to-play) games [1–3].
Non-contractual upgrades are usually made in

in-app purchases (IAPs) and often referred to as
micro-transactions as they tend to be made in small
amounts and repeated manifold by engaged players [1].
One key feature of non-contractual freemium and
sharing economy settings is that a small subset of all
users can finance the free provision of the product
or service for the rest of users [4]. In free-to-play
games, frequent repeat purchasers are often referred
to as whales, relaying to their disproportional revenue
contribution. To avoid any potentially demeaning
connotations, we will refer to such users more
objectively as high-value users.
High-value users indeed carry huge value for companies
as their existence can make the difference between
operating at a profit or a loss [5]. Companies hence
often strive to provide the best possible experience
to these users. The goal is to achieve a high share of
premium users and to spur repeat purchases. High-value
users are commonly defined based on their revenue
contribution which is generally captured in the notion
of customers’ Lifetime Value (LTV) [5–7].
Firms wish to have accurate predictions of LTV as early
as possible after users’ product adoption to tailor their
marketing efforts. The predicted LTV is used for a
number of marketing initiatives:

• User acquisition, i.e. the task of acquiring
new users on digital advertising networks [5]:
LTV informs marketing managers how much
they can afford to expense for acquisition of a
new user. For user acquisition campaigns to
be profitable, LTV needs to be higher than the
amount expensed to have a new player install
a game [8]. LTV predictions hence allow for
a profitability assessment of different marketing
campaigns. Budget size and allocation and
targeting parameters can then in turn be adjusted
for more optimal targeting.

• Customer service: High-value users, i.e. users
with high predicted LTV, can be offered
preferential treatment by customer service agents

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50002
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 923



0.0 0.2 0.4 0.6 0.8 1.0
Normalized LTV

100

101

102

103

C
ar

d
in

al
it

y
(l
og

)

(a) Histogram of LTV for premium users
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Figure 1: A visual exploration of LTV in our non-contractual freemium setting: (a) illustrates the log-scaled
distribution of normalized LTV per user; the majority of premium users pays a small amount. (b) shows the normalized
sum of LTV (and hence revenue contribution) per LTV-ranked quantile; more than 80 % of the revenue comes from
20 % of premium users.

to ensure a great product experience or they can
be enrolled in loyalty programs and other tailored
marketing initiatives [2].

• In-product advertising: Companies strive not to
harm the product experience of high-value users
and may hence choose not to expose users with
high predicted LTV to in-product advertising.

• Pricing and promotions: Marketers may choose
not to expose players with a high predicted
revenue contribution to price promotions with
excessive discounts as this may harm their
revenue contribution. At the same time, they may
want to support users with lower predicted LTV
by extending targeted offers to them to foster their
engagement with the product.

Predicting the LTV of high-value users correctly is
of particular importance. These users contribute the
majority of overall revenue - e.g. the top 10% of
paying users in [2] contribute 60% of revenue - and
hence ‘co-finance’ product use and the development of
future products for all other users [4]1. Figures 1 and
2 visualize this phenomenon for the freemium setting
under study in this paper, where we observe that more
than 80 % of the revenue comes from 20 % of premium
users.
Furthermore, identifying future high-value users and
predicting their LTV correctly bears strongly on overall
prediction performance as errors here will proliferate
over-proportionally to predictions of average and
summed LTV in customer cohorts.

1Bear in mind that only a small share of users pay at all [1, 9] and
hence less than one percent of users generate 60% of revenue. [10]
even find that one percent of users generates 85% of revenue.

1.1. Contribution

The present study is situated in the freemium gaming
industry and makes use of data from a large free-to-play
game (we use the terms freemium and free-to-play game
interchangeably [11]) to generalize to non-contractual
freemium and sharing economy settings. Despite the
relevance of LTV predictions in this context, to our best
knowledge, there is only one study on the topic [10].
This paper frames the prediction problem and applies
a number of common machine learning methods for the
prediction of individual-level LTV on unique data from a
large free-to-play game. It then combines said methods
with synthetic minority oversampling (SMOTE) [12] to
achieve better prediction performance. We find that
deep multilayer perceptrons combined with SMOTE
achieve the best prediction performance for premium
and high-value users. In doing so, we extend the study
of Voigt and Hinz [10] by using a number of common
machine learning methods rather than stochastic models,
making use of non-purchasing related information and
explicitly addressing the high imbalance and skewness
present in freemium datasets.

2. Predicting LTV in Non-Contractual
Freemium Settings

The marketing literature abounds of conceptual
[6, 7], methodological [13, 14] and empirical [15,
16] studies of customers’ LTV. Methodologically,
most empirical contributions are routed in stochastic
models of customer behavior [10, 14, 16] or regression
approaches [15,17]. The datasets at use mostly describe
monetary transactions of customers.
The present study makes use of data from a large
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Figure 2: An example regression tree for individual-level LTV prediction in a freemium game. User activity related
data contribute to predictions beyond data on a user’s purchase history (please note that monetary predictors and LTV
are normalized). The high skewness of the LTV distribution and the related low share of high-value users can be noted
in the tree’s leaves.

free-to-play game. There are numerous studies
that investigate the prediction of player behavior in
(freemium) games. E.g. [2, 18–21] investigate the
prediction of player disengagement/churn, [22–24]
focus on player retention and [1] predict players’
purchase decisions in mobile free-to-play games. Player
engagement and purchasing are at the core of players’
value to a company, and so is their combined outcome:
Monetary LTV. To date, to our best knowledge, there
is only one study approaching LTV prediction in such
settings [10].
Non-contractual freemium models can be mostly found
in products with strong network effects (e.g. Skype or
dating apps) and free-to-play games. They allow for
repeat purchases, the number and monetary value of
which is at the users’ discretion (compare to [10, 16]).
Only a small subset of users, usually in the single digit
percent space [1, 9], ever make a purchase. Data are
hence highly imbalanced [25] and there is abundant
non-purchase related data that describe user behavior in
depth and that can be valuable for prediction [1].
The stochastic models proposed by the marketing
literature [14] are somewhat ill-equipped to deal with
this kind of data as they were conceived for purchase
related data. It would certainly be interesting to extend
them to highly detailed usage data, but this is beyond
the scope of the current study – especially as their
performance in applied settings remains uncertain [26].
We wish to emphasize that our methodological
thinking deviates substantially from [10] who build on
stochastic models and disregard non-purchasing related
information. While purchasing related information
carry a lot of predictive value, it has been shown
that non-transactional data do contribute to prediction
performance additionally [1]. We hence expect their
inclusion to lead to superior prediction performance.
Figure 2 indicates that they indeed do as user activity

related predictors show up near the top of the tree. It
will be interesting to compare both approaches in future
research.
In the spirit of [27], a marketing study that finds bagging
and boosting techniques to perform well for customer
behavior prediction, and [1] who find Random Forests
with SMOTE to perform best for purchase prediction
in free-to-play games, we adopt tree-based (ensemble)
methods combined with approaches to deal with the
strong imbalance in the data [12]. We also include
regression techniques as these have been reported to
work well [15, 17]. We opt for using simple linear
regression as a benchmark. And we finally add deep
multilayer perceptrons (Deep-MLP) to the mix because
of their recent superiority in a number of applications
[28, 29]. [2] further find them to perform well for user
behavior prediction in freemium games.

2.1. The prediction problem

[4, 9, 30, 31] all highlight the relevance of social
interaction for engagement, monetization and virality in
freemium games and products more generally. While
we deem it highly relevant to investigate how social
interaction shapes users’ LTV in freemium settings and
how one can reasonably quantify positive externalities
such as viral activity to include them in LTV, the focus
of the present study is on monetary LTV. In line with
managerial literature [5, 8], we aim at predicting users’
undiscounted cumulative spend until day 360 of product
use2 and we disregard cost as it is virtually zero at the
margin [9, 10].

As firms strive to have predictions available early

2Some companies prefer different time horizons, e.g. 180 or 720
days of product use. This largely depends on monetization dynamics
of the firm’s products and financial/strategic planning horizons. In our
opinion, it is unlikely that prediction performance of different methods
substantially differs between the different mentioned time horizons;
we hence adopt the time horizon used by the data sponsor of this study.

Page 925



Table 1: Dataset description

Feature Type Descriptor(s)

Telemetry

Number of sessions
Number of rounds
Number of days

Number of purchases
Total purchase amount

Total playtime
Total absence time

Total inter-session time
Total inter-round time
Total weekday number

Social network connections
Total score

Number of lives
Amount of game currency

Number of cleared game elements
Difficulty level
Moves count

Level outcome
Skill measure I
Skill measure II
Skill measure III

Level type

Temporal
Time between daily first and last session

Inter-day time distribution
Inter-session time distribution

Composite
Correlation coefficients on time1

First order trends1

Maximum, mean, median and deviation on time1

Activity ratios and entropy per unit2

Meta
Country segment

Device type
Operating system
Acquisition type

1 Calculated for daily and session-wise distributions of features in
Telemetry and Composite

2 Calculated for the game types and difficulty levels in Telemetry

in the customer journey to inform aforementioned
marketing actions [8], we use datasets of seven days
of user behavior observations in the prediction. This is
further sensible as user behavior in free-to-play games
displays a strong weekly periodicity. Formally, we can
denote the prediction problem as

LTV = yday8−day360 = f (xdayZ), (1)

where

• yday8−day360 represents the total amount spent
by a user on IAPs during the prediction period,
i.e. between day eight and day 360 after product
adoption.

• xdayZ ∈ Rm describes a user behavior
observation set for given m features until day Z
after the installation of the game, for our case
Z = 7.

• f : Rm → R is the hidden function we will be
approximating.

Grouping the target values under a vector y, and
following [15], our aim is to evaluate different
approximators of f that individually minimize the
normalized rooted mean squared error (NRMSE) that
we denote as

NRMSE =

√√√√ 1

n

n∑
j=1

(yi − ŷi)2 ȳ−1, (2)

where ȳ represents the mean of y.

2.2. Data Pre-processing and Feature
Extraction

Sifa et al.’s [1] is one of the few studies focusing
on the prediction of purchases in free-to-play games.
One reason for the paucity of research on this topic
may be the unavailability of detailed data on monetary
transactions. In this work we used a dataset containing
behavioral and monetary information of 120,000 players
of a large free-to-play game. The game builds on a
widespread casual game mechanic and is distributed on
Apple’s app marketplace. It is highly representative of
large-scale social games [31] and has been played by
close to 100 million players across platforms to date.
Game monetization, as standard in free-to-play games,
is based on IAPs where the player purchases in-game
currencies that can then be used to acquire in-game
goods.
Before building our prediction models, similar to [1, 19,
22], we define game agnostic and gameplay features for
each player that can be grouped under four categories. In
category Telemetry we consider primary activity-related
metrics such as number of sessions, rounds and days
played or the total play and inter-session time within the
window of observation. Additionally, we consider game
specific features such as the amount of in-game currency
purchased, the number of lives and the current game and
mastery level of players.
The category Temporal covers features that capture
temporal patterns of behavior, such as time between
first and last session and inter-day and inter-session time
distributions. To capture variation in time and represent
ratios of the features in the previous two categories,
we calculate players’ game-type distributions and
correlation coefficient, maximum, mean, median and
standard deviation on time. We call this category
Composite as we create composite features from pure
telemetry and temporal data.
The final category in our data set is Meta which contains
features such as country of origin, type of device,
operating system and if a player was acquired through
digital marketing or not.
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We refer the reader to Table 1 for an overview of the
dataset. In the next section we will address a method
to regularize regression models towards predicting
non-zero entities better by generating synthetic premium
users during the training phase.

3. Imbalance in Behavioral Datasets and
Synthetic Minority Oversampling

Prediction objectives in behavioral datasets are often
characterized by high class imbalance. In the case of
digital games, this imbalance is mostly caused by rare
classes rather than rare events [25] as the number of
observed entities is usually very large. Often, prediction
of rare entities carries the higher value proposition.
This is certainly the case for premium and high-value
users in freemium settings. Other examples include
the prediction of fraudulent behavior [32], detecting
purchase decisions [1] or predicting player churn [2, 19,
33].
Due to the more or less generalizable approaches to
finding optimal parameters, conventional supervised
machine learning models usually tend to lean towards
the majority class especially when we are dealing
with highly unbalanced datasets. SMOTE [12] is a
flexible data augmentation method that can be adapted
to behavioral datasets in a straightforward manner [1]. It
creates synthetic entities of the minority class during the
model training phase to regularize the prediction models
to avoid overfitting and to learn structures representing
minority entities. In many ways, SMOTE resembles
distortion-based model regularization techniques [34,
35]. In this section, we will shortly study the adaptation
of the algorithm for LTV prediction.
Since collectively and sequentially structured behavioral
datasets usually contain numerical (such as number of
sessions/logins to the app) as well as nominal attributes
(such as country of origin), in the following, we consider
an ordered set based data representation. Formally, we
start by letting y ∈ Rn contain the vector of LTV
values for the n players in our training set, grouping the
data indices of numeric (including the LTV value) and
nominal attributes respectively as under V and B, we
represent a data point as an m̂ = |V |+ |B| dimensional
ordered set that we refer to as § and the data set as
X =

{
§1, §2, . . . , §n

}
. This is, followed by separating

the minority data points that we will be using to generate
synthetic entities as X p =

{
§J [1], §J [2], . . . , §J [n̂]

}
where J =

{
i | ∀i ∈ [1, 2, . . . , n] ∧ yi 6= 0

}
with

the cardinality n̂ = |J |.
Next, for a predefined number of times (which we
denote as ñ), we select a random data point §i from
X p, one of its k nearest neighbors (which we denote

as §neighbor) and create a point as combination of both.
There are two major points to be stressed regarding this
generation process:

• Defining a dissimilarity (or similarity)
coefficient [36] between two selected points:
In this study, we make use of an additive
dissimilarity coefficient combining Euclidean
distance and set difference weighted dissimilarity
for numerical and nominal features respectively.
The set difference-based similarity can be
obtained by considering a composite metric on
B [1, 12] as a so called punishment multiplier
to increase the dissimilarity between points
sharing a smaller number of nominal attributes.
In essence, the dissimilarity between two given
data points §i and §j can be obtained as

dij =

√√√√uT
ijuij + c2

|B|∑
l=1

q(bil, bjl), (3)

where uij = §i
[
V
]
− §j [V

]
is the difference

vector of the numerical attributes of §i and §j , |·|

represents the set cardinality, bi ∈ N|B| indicates
the enumerated nominal attributes in §i

[
B
]
, q is

the discrete metric [37] and defined as

q(a, b) =

{
1 if a 6= b

0 otherwise.
(4)

Additionally, the punishment multiplier c can be
calculated as

c← median
l∈V

{
g(xpl)

}
, (5)

where xpl ∈ Rn̂ represents the (numerical) values
of the lth attribute for data points belonging to
the minority class and g : Rn̂ → R and can
picked to be the standard deviation [1, 12]. It
is worth mentioning that, since we are interested
in finding k nearest neighbors for each active
point (i.e. the dissimilarity ranking between all
of the minority players), we can as well consider
the squared value of dij in (3) when selecting a
similar player [38]. Furthermore, both dij and
d2ij are valid symmetric dissimilarity coefficients
[36] with zero lower-bounds (also considering self
dissimilarity).

• Mixing the points to generate new ones: We
can combine two users by creating a nonnegative
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mixture vector hi = {hij |∀j ∈ [1, 2, . . . , |V |] ∧
hij ∈ [0, . . . , 1]} containing probabilities (for
instance selected from uniform distribution) and
considering the convex mixture

§synth
[
V
]
← hi � §i

[
V
]
+ (6)

(1− hi) � §neighbor
[
V
]
,

where §synth is the synthetic data point that we
are generating and� is the Hadamard product. As
a final step §synth inherits the nominal attributes

of the active data point as §synth
[
B
]
← §i

[
B
]
.

We list the main steps of SMOTE adapted for LTV
prediction in Alg. 1, where we for convenience rewrote
(3) in terms of euclidean norm and set difference.

4. Results and Discussion

This section presents the results obtained from
benchmarking four different regression methods on
our dataset with and without SMOTE based data
augmentation. We will start by introducing the general
setting we used for experimentation and present the
prediction results for different user segments. Next, as
also illustrated for the classification problems in [1, 22,
23], we will show a ranked list of important features
from our decision tree based models to understand how
informative the different features are for the prediction
of LTV. Finally, we will turn our attention to the use of
our findings to practitioners, in particular how they can
be used by managers to customize marketing iniatitives.

4.1. Setting

We compare the prediction performances of mean
squared error minimizing Random Forests (RF), Linear
Regression (LR), Decision Trees (DT) and Deep
Multilayer Perceptrons (Deep-MLP) with and without
SMOTE augmentation. We apply four different
perspectives: Correctly predicting LTV of (a) all users,
(b) premium users and (c) high-value users that are
within the fifth (highest value) quantiles (see Fig. 1b);
and (d) assessing the hit rate of sorted LTV values
produced by the models. The first three perspectives
aim to analyze the stability of the models from general
to specific player types and we will use NRMSE (see
Eq. (2)) to quantify the quality of the fit. The last extends
this assessment to user recommendations targeted on a
ranking. To concisely quantify the performance, we will
refer to the recall value of each LTV-ranked list.

Furthermore, we used fully connected Multilayer
Perceptrons of four hidden layers with neurons ranging
in [50, . . . , 140] in each layer. To avoid overfitting

Algorithm 1 Synthetic Minority Oversampling with
Nominal and Numerical Attributes for Lifetime Value
Analysis

// Separate attributes based on their types

Let V contain indices of numerical attributes in X
Let B contain indices of nominal attributes in X
// Filter the premium players from the data set

Let J =
{
i | ∀i ∈ [1, 2, . . . , n] ∧ yi 6= 0

}
with |J | = n̂

Let X p =
{
§J [1], §J [2], . . . , §J [n̂]

}
// Define a multiplier for nominal deviations

c← median
l∈V

{
g(xpl)

}
Set U to contain synthetic players.
// Create ñ synthetic players

for i ∈ [1, 2, . . . , ñ] do
// Randomly select a premium player

§i ← Select(X p)

// ∀j ∈ [1, 2, . . . , n̂] calculate the dissimilarities to §i
dij ←

√∥∥§i[V]− §j
[
V
]∥∥2 + c2

∣∣§i[B]− §j
[
B
]∣∣

// Randomly select one of the k nearest neighbors

§neighbor ← Select(X p, k, di1, di2, . . . , din̂)

//Initialize a random mixture vector hi

hi = {hij |∀j ∈ [1, 2, . . . , |V|] ∧ hij ∈ [0, . . . , 1]}
// Create a synthetic player by mixing both vectors

§synth

[
V
]
← hi � xi

§synth

[
V
]
← §synth

[
B
]
+(1−hi) � §neighbor

[
V
]

// Inherit the nominal attributes from §i
§synth

[
B
]
← §i

[
B
]

// Add the synthetically generated player to U
U ← U ∪ §synth

end for
Train regression models with X and U

and obtain better generalization [39] we apply dropout
regularization [40], which randomly blinds different
portions of the weights of neural networks during
training. Unless it is explicitly specified all of the results
presented are based on tenfold cross validation. In order
to ensure usability of the proposed system in real world
analytics applications, both the SMOTE-based data
augmentation as well as the model building phase have
been performed individually for each cross validation
split [22]. Models with highest NRMSE for high value
users were selected.

4.2. LTV Prediction Results

Table 2 lists the average results of a tenfold
cross-validation for the four chosen algorithms, once
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Table 2: Normalized Rooted Mean Squared Error
Values from 10 fold cross validation for the entire (All),
premium (Prem.) and high value (H.V.) players.

Model NRMSE
All Prem. H.V.

RF 22.61 3.04 1.57
LR 22.10 3.07 1.60
DT 29.47 3.37 1.69

Deep-MLP 21.80 3.03 1.57
RF+SMOTE 22.52 3.03 1.55
LR+SMOTE 22.90 3.02 1.57
DT+SMOTE 34.65 3.66 1.67

Deep-MLP+SMOTE 21.97 2.90 1.48

with SMOTE data augmentation and once without.
NRMSE can be interpreted as the RMSE in percent
of the predicted criterion [15]. RF, LR and
Deep-MLP display comparable prediction performance
with Deep-MLP having a slight edge over the other
methods. The DT regressor performs worst, both with
and without SMOTE. In particular it does not benefit and
likely overfits when data is augmented with SMOTE.
Importantly, we observe that SMOTE improves the
prediction performance of multilayer perceptrons for
premium and high-value users, by four and six percent
respectively. If we look at all users, SMOTE slightly
improves the performance of RF which is in line with
prior research [1].
The behavioral and background data at hand are
characteristic of the datasets usually available to
industry in such settings.

Relevant data that are not covered by the background
heterogeneity and product use observations in our
dataset (see table 1 for an overview) may address
personality and other psychological characteristics
of users, their income and further socioeconomic
covariates.
Additionally, a large part of the error stems from
non-zero predictions for users with actual zero LTV.
This is apparent in the NRMSE dropping significantly
when we look at premium and high-value users
only (the two rightmost columns in Table 2). It
appears worthwhile to investigate in future studies how
incorporating data from different sources might improve
the predictions of high-value users as well as the actual
zero instances.

4.3. Variable Importance Analysis

One advantage of decision tree based approaches
for classification and regression is that they allow to
read off the important features (which are informative

0.0 0.5 1.0
Normalized Mean Variance Score

Total Purchase Amount
No. of Purchases

Deviation Game Currency
Avg. Game Currency

Game Currency Median Round
Correlation Game Currency

Total Playtime
Game Currency on Last Round

Move Count Last Round
Game Currency on Median Round

Deviation Max. Skill-I
Level on Last Round

Deviation Score
Avg. Skill-II

No. of Rounds on First Day
Ratio of Skill-III

Correlation Intersession Time
No. of Rounds

Deviation Intersession Time
Level Type-II Ratio

Figure 3: Normalized mean variance scores for feature
importance from random forest based regression models
that are trained with augmented datasets. In line with
prior research [1, 10], results indicate that the purchase
amount as well as the number of previous purchases
are the most informative features for determining future
LTV of a player. Features encoding player in-game
activities also rank highly.

for the prediction objective) directly from the built
models [1, 22]. We extend the variable importance
insights from figure 2 with an additional approach:
Analyzing the prediction results for each of the
features and comparing the reduced loss over all of the
estimators in the random forest models. In figure 3 we
compare the average normalized feature importance
values for the top 20 features for random forest models
trained on datasets augmented with SMOTE. [1] find
that the number of purchases and the amount spent
were almost equally informative for the prediction of
future purchase decisions (with the former being more
informative). Our results indicate that the amount spent
during the last purchase prior to prediction time point
is the most informative feature to predict LTV. This is
followed by the frequency of the purchases made within
the observation window. These findings are in line with
a recent study on LTV in freemium settings [10].
Additionally, for the game under study, we observe
that features encoding user activities related to in-game
currency are highly ranked predictors of the LTV
of a user. These involve the round-based mean and
deviation, the temporal correlation and status on the
last and median round. We interpret them to reflect
the relation between users’ spending on IAPs and the
evolution of their stock of in-game currency (remember
that in-game currency is sold in IAPs).
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In line with the findings of [1], our results also underline
the importance of product use related features such
as different measures of skill. This speaks to our
methodological difference from [10] who build on
stochastic models and disregard non-purchasing related
information. While purchasing related information
carry the bulk of predictive value, product use related
information add to prediction performance. A direct
comparison of results is not possible due to choice of
different error measures. We deem it highly interesting
to benchmark stochastic models and the presented
machine learning methods in future research. An
extension of stochastic models to take product use
related information into account could be valuable
to further improve their prediction performance in
freemium settings.

4.4. Informing Marketing Initiatives: Hit
Rates

Having noted the overall prediction results and
variable importance through decision tree based models,
we now turn our attention to the use of the presented
methods for marketing initiatives. Often, a ranking of
users in terms of revenue contribution forms the main
decision basis. Coming back to the marketing initiatives
mentioned in the introduction of the paper, examples of
managerial actions informed by a user ranking in terms
of LTV are:

• User acquisition: Shift marketing budget to
campaigns that contain large shares of high
ranking users.

• Customer service: Handle requests from high
ranking users with priority.

• In-product advertising: Do not expose top x% of
the ranked list to advertising.

• Pricing and promotions: Offer large bundles to
high ranking users, offer small bundles to low
ranking users.

To assess the validity of the ranking yielded by the
different methods, we sort users into a ranking based
on the predictions of each method. We use this ranking
to evaluate how well the respective method is able to
capture future premium users by analyzing the hit rate
(or recall) of premium players along the sorted LTV
predictions. Similar to the prediction results we showed
in table 2, here the values are calculated from the
predictions of the unseen test entities and averaged over
tenfold cross-validation.

Tables 3 and 4 show the hit rates for the task of
finding a premium player through the estimated LTV
ranking and the area under the hit rate curve, both
for the non-augmented and augmented datasets. Each
row contains information about the recall and area of
the curve so far calculated for a particular population
ratio. To illustrate: The fourth row in Table 4 indicates
that for each trained model, we consider one fifth of
the data set of the LTV prediction-sorted players and
calculate the percentage of future premium users that
were ”hit correctly”. These values amount to 75.41,
63.88, 68.94 and 68.70%, for Deep-MLP, DT, RF and
LR respectively on the data with SMOTE augmentation.
Data augmentation with SMOTE helps increase the hit
rates for Deep-MLP, DT and RF. For LR, results are
mixed, but predominantly positive. Importantly, data
augmentation with SMOTE combined with multilayer
perceptrons allows to identify more than 80% of
premium users with a 25% population ratio. This makes
use of LTV ranked user lists in practice highly attractive.
These 25% of users can be used for look-alike targeting
in user acquisition3, treated with priority in customer
service, excluded from possibly annoying advertising,
and be targeted with attractive upselling promotions.
The area under the hit curve similarly allows us to
compare the evolution of the hit rate as we increase
the considered population ratio. It largely confirms hit
rate-based results in that multilayer perceptrons with
SMOTE operate at a clear advantage over the other
considered methods in identification of future premium
and high-value users.

5. Conclusion

In non-contractual freemium settings, users can
freely choose the number and size of their purchases
of premium upgrades, examples are freemium games
and dating, co-working and networking applications.
In such settings, a small share of users usually
drives revenue disproportionately and co-finances free
provision of the product (and development of new
products) for all users [4]. The existence of such
high-value users can be essential to firms’ survival.
Firms hence wish to identify these users as early as
possible to tailor marketing initiatives to retain existing
and acquire new users of this kind.
Speaking to this managerial problem, we identify
high-value users as those with high future revenue
contribution and hence high LTV. In line with
managerial literature [5,8], we define LTV as users’ IAP
spending until day 360 of product use. We frame the

3For more information we refer the interested reader
to https://www.facebook.com/business/a/
lookalike-audiences.
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Table 3: Cross validated hit rates (in %) and hit curve areas for models trained on nonaugmented data

Ratio Deep-MLP DT RF LR
5 43.15 188.53 35.50 148.07 35.04 138.48 42.52 189.67

10 54.08 483.95 46.85 397.86 50.38 392.76 53.53 479.30
15 61.48 832.11 53.88 703.52 60.67 728.75 60.93 823.26
20 67.58 1217.63 61.00 1047.38 67.82 1113.93 66.69 1205.41
25 72.29 1637.73 66.10 1430.50 73.70 1537.18 71.64 1620.25
30 75.87 2082.66 71.52 1843.42 78.03 1992.41 75.65 2061.47

Table 4: Cross validated hit rates (in %) and hit curve areas for models trained with augmented data

Ratio Deep-MLP DT RF LR
5 46.24 193.00 36.38 171.11 40.16 175.48 40.13 161.87

10 59.92 515.66 45.85 418.32 52.95 458.34 53.68 446.15
15 68.86 903.89 54.42 719.67 62.00 803.35 62.70 797.04
20 75.41 1337.27 63.88 1074.10 68.94 1196.88 68.70 1192.48
25 81.08 1806.39 72.27 1481.85 74.44 1626.55 74.58 1622.10
30 85.20 2304.20 75.83 1928.55 78.78 2087.35 78.75 2082.52

related prediction as a regression of LTV on background
information (particularly user’s device and country) and
seven days of in-product behavioral observations and
apply four broadly used and powerful algorithms to
solve it. To our best knowledge, we are the first to do
so.
In line with existing literature [1, 10, 15], we find users’
past purchases and their value to be highly predictive of
LTV. We further find that features derived from product
use improve predictive accuracy additionally.
Addressing the high imbalance present in freemium
datasets where only a few users ever make a premium
purchase, we apply data augmentation with SMOTE
– creating synthetic premium and high-value users to
facilitate their prediction. We find deep neural networks
in combination with SMOTE to provide superior overall
performance and outline how predictions can be used in
managerial applications.
Finally, we want to briefly discuss limitations that
open up opportunities for further research. The
incorporation of social [4, 31] aspects of user and
player behavior in LTV prediction is a beneficial avenue
for future research. Further, it will be necessary
to verify the present results on further products and
games to assess their consistency and to enable
the development of cross-product predictive systems
[19, 41]. Last but not least, we deem it highly
relevant to explore additional data sources for LTV
prediction. The obtained NRMSE results indicate
that the data at hand – that are characteristic of
industry datasets in freemium environments – partially
capture the data generating process; especially errors
for users with zero actual LTV are highly prevalent.

Additional socioeconomic and environmental covariates
as well as information pertaining to psychological and
personality attributes [42–44] may address relevant
dimensions of consumer decision-making and could
increase predictive performance tremendously.

Acknowledgment

The authors would like to thank the anonymous
reviewers for their insightful comments and the data
sponsor for granting access to a unique dataset.

References

[1] R. Sifa, F. Hadiji, J. Runge, A. Drachen, K. Kersting, and
C. Bauckhage, “Predicting Purchase Decisions in Mobile
Free-to-Play Games,” in Proc. of AAAI AIIDE, 2015.

[2] J. Runge, P. Gao, F. Garcin, and B. Faltings, “Churn
Prediction for High-value Players in Casual Social
Games,” in Proc. IEEE CIG, 2014.

[3] R. Sifa, A. Drachen, and C. Bauckhage, “Large-scale
Cross-game Player Behavior Analysis on Steam,” in
Proc. of AAAI AIIDE, 2015.

[4] R. Bapna, J. Ramaprasad, and A. Umyarov, “Monetizing
Freemium Communities: Does Paying for Premium
increase Social Engagement?,” in MIS Quarterly, 2017.

[5] E. Seufert, Freemium Economics: Leveraging Analytics
and User Segmentation to Drive Revenue. Morgan
Kaufmann, 2014.

[6] S. Gupta, D. R. Lehmann, and J. Ames Stuart, “Valuing
Customers,” in Journal of Marketing Research, 2004.

[7] W. J. Reinartz and V. Kumar, “The Impact of Customer
Relationship Characteristics on Profitable Lifetime
Duration,” in Journal of Marketing, 2003.

[8] J. Runge, “The Golden Curve: Determining Player Value
in Freemium Apps.” https://thenextweb.com,
2014.

Page 931



[9] J. Runge, S. Wagner, J. Claussen, and D. Klapper,
“Freemium Pricing: Evidence from a Large-scale
Field Experiment,” tech. rep., Humboldt University
Berlin, School of Business and Economics, Institute of
Marketing Working Paper, 2016.

[10] S. Voigt and O. Hinz, “Making Digital Freemium
Business Models a Success: Predicting Customers
Lifetime Value via Initial Purchase Information,”
Business and Information Systems Engineering, vol. 58,
no. 2, 2016.

[11] W. Luton, Free-to-Play: Making Money From Games
You Give Away. New Riders, 2013.

[12] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “SMOTE: Synthetic Minority
Over-sampling Technique,” Journal of Artificial
Intelligence Research, vol. 16, 2002.

[13] D. C. Schmittlein, D. G. Morrison, and R. Colombo,
“Counting Your Customers: Who Are They and What
Will They Do Next?,” in Management Science, 1987.

[14] P. Fader, B. G. S. Hardie, and K. L. Lee, “‘Counting
Your Customers’ the Easy Way: An Alternative to the
Pareto/NBD Model,” in Marketing Science, 2005.

[15] B. Donkers, P. C. Verhoef, and M. G. De Jong,
“Modeling CLV: A Test of Competing Models In the
Insurance Industry,” in Quantitative Marketing and
Economics, 2007.

[16] P. S. Fader, B. G. S. Hardie, and K. Jerath, “Estimating
CLV Using Aggregated Data: The Tuscan Lifestyles
Case Revisited,” in Journal of Interactive Marketing,
2008.
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