Data Trading Similarity Signature An Extended Data Trading Framework for Human and Non-Human Actors

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Fair and secure data trading is one of the most prominent challenges of the 21st century. This paper presents a second iteration of an approach to develop a data marketplace concept by checking consumer requirements. The main problem we identified is data quality and the question: Would a dataset fulfill the consumer requirements? Starting from an approach that uses a binary response set to answer the question of whether requirements are met, we concluded that a description of consumer requirements needs to be quantitatively comparable. The novel approach presented here identifies similarities between datasets and consumer requirements. It forms a unique, fingerprint-like similarity signature for each dataset, which can be interpreted by both human and non-human actors. The approach is deducted and designed by using the Design Science Research Methodology and discussed critically in the end.

Description

Keywords

Social Shopping: The Good, the Bad, and the Ugly, autoencoder, data marketplace, data quality, data trading, design science

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.