Using Twitter Post Data to Ascertain the Sentiment of Alcohol-related Blackouts in the United States
Files
Date
2023-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
3367
Ending Page
Alternative Title
Abstract
Research shows variability in how alcohol-related blackouts (periods of memory loss during/after drinking) are subjectively evaluated. We accessed 3.5 million original Tweets written in the U.S. between July 2009 and February 2020 that referenced blackouts, and coded the sentiment (positive or negative) of those Tweets, using the machine learning function of a Twitter-sponsored commercial platform. The sentiment of Tweets was examined by day of week and compared to the sentiment of blackout Tweets on certain holidays to non-celebration matched days. Tweets were more likely to have a positive (73%) than negative sentiment, and positive Tweets were more common during weekends. Relative to typical non-celebratory weekends, a greater proportion of blackout Tweets were positive around Thanksgiving and New Year’s Eve, though differences were not observed relative to several other celebratory periods (e.g., Superbowl). Results have implications for online interventions, which can use social networking sites to target alcohol during high-risk periods.
Description
Keywords
Social Media and Healthcare Technology, alcohol, blackouts, sentiment coding, twitter
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.