Requirements for Data Valuation Methods

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Data is considered the most significant intangible asset for the 21st century enterprise. Serving as key asset for ever-increasing digital transformation and entrepreneurship, they ensure economic success through empowering new technologies, services and business models. Despite their high relevance, there exist neither consistent valuation methods nor specific requirements for developing such methods. Data valuation is crucial in order to better understand their value and, for example, incorporating them into financial statements. Existing literature indicates relationship between data value and quality. Thereupon, we conducted semi-structured expert interviews to gain insights on data valuation methods in connection with data quality. This results in 11 requirements for data valuation methods and seven value-driving quality criteria. Furthermore, several challenges for future data valuation are derived from the empirical results.

Description

Keywords

Business Intelligence, Business Analytics and Big Data: Innovation, Deployment, and Management, data management, data quality, data valuation, requirements, valuation challenges

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.