Social Media and Fake News Detection using Adversarial Collaboration
Files
Date
2022-01-04
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The diffusion of fake information on social media networks obscures public perception of events, news, and relevant content. Intentional misleading news may promote negative online experiences and influence societal behavioral changes such as increased anxiety, loneliness, and inadequacy. Adversarial attacks target creating misinformation in online information systems. This behavior can be viewed as an instrument to manipulate the online social media networks for cultural, social, economic, and political gains. A method to test a deep learning model- long short-term memory (LSTM) using adversarial examples generated from a transformer model has been presented. The paper attempts to examine features in machine learning algorithms that propagate fake news. Another goal is to evaluate and compare the usefulness of generative adversarial networks with long-term short-term recurrent neural network algorithms in identifying fake news. A closer look at the mechanisms of implementing adversarial attacks in social media systems helps build robust intelligent systems that can withstand future vulnerabilities.
Description
Keywords
Adversarial Coordination in Collaboration and Social Media Systems, adversarial collaboration, fake news, gan, generative adversarial networks, social media
Citation
Extent
9 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.