Text-based Causality Modeling with a Conceptual Label in a Hierarchical Topic Structure Using Bayesian Rose Trees

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

1101

Ending Page

Alternative Title

Abstract

This paper describes a method for constructing a causality model from review text data. Review text data include the evaluation factors of rating, and causality model extraction from text data is important for understanding the evaluation factors and their relationships. Several methods are available for extracting causality models by using a topic model. In particular, the method based on hierarchical latent Dirichlet allocation is useful for hierarchically comprehending causality structure. However, the depth of each topic in a hierarchical structure is forcefully pruned even if granularities differ for each topic. Thus, interpreting a hierarchical topic structure is difficult. To solve these problems, we construct a hierarchical topic structure with different depths by using Bayesian rose trees. Furthermore, we use conceptual labeling to add explicit semantics for each topic for interpretation. An experiment confirms that this model is accurate and interpretable using actual data.

Description

Keywords

Data, Text and Web Mining for Business Analytics, bayesian rose trees, causality analysis, conceptual labeling, hierarchical topic structure

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.