An Implementable Guideline for Developing Ethical AI Systems: The Evaluation of Child Abuse and Neglect Prediction

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

6828

Ending Page

Alternative Title

Abstract

Artificial Intelligence (AI) is becoming a crucial part of our lives. Although AI applications, such as facial recognition, autonomous driving and ChatGPT, can benefit different industries, users are more and more concerned about the ethical issues associated with AI systems. As a result, various ethics frameworks and standards have been proposed for regulating AI systems. Nevertheless, existing ethics frameworks and standards are hardly actionable or implementable for AI developers. To fill this gap, the current study proposes an actionable ethics-aware guideline for AI developers, as well as a set of quality metrics for ethical AI systems. Further, we implement the guideline using numerous AI predictive models constructed on a national big data set that estimates children’s risk of experiencing abuse and neglect in the United States. Evaluation results indicate that the proposed guideline can effectively enhance the quality of predictive models in utility, ethicality and cost dimensions.

Description

Keywords

Artificial Intelligence and Digital Discrimination, artificial intelligence, machine learning, ethical guideline, implementation, evaluation, ai quality metrics, child abuse and neglect

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.