On Communication-Assisted Line Protection for Multi-Inverter Microgrids

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

2917

Ending Page

Alternative Title

Abstract

Protection is critical in maintaining grid stability and reliability. Microgrids, which are small-scale power systems that can operate autonomously or while connected to the main grid, pose unique challenges for protection schemes. Traditional protection methods, such as time-delayed overcurrent relays, reclosers, and fuse-based protection may not be sufficient to detect faults in microgrids. This paper discusses the differences in protection requirements between autonomous and grid-connected microgrids, a comparison of overcurrent and differential protection schemes, and the advancements in microgrid communication, cybersecurity, standards, and test beds. A benchmark 4-bus microgrid system is implemented in distribution voltage ratings, with simulation results demonstrating the effectiveness of synchrophasor-based relays in detecting faults. Showing the feasibility of differential protection over overcurrent protection. Paper is concluding with future work needed to enhance the novel protection concepts.

Description

Keywords

Distributed, Renewable, and Mobile Resources, active distribution, grid-connected, islanded microgrid, line protection, microgrids

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.