On Communication-Assisted Line Protection for Multi-Inverter Microgrids
Loading...
Files
Date
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Interviewee
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
2917
Ending Page
Alternative Title
Abstract
Protection is critical in maintaining grid stability and reliability. Microgrids, which are small-scale power systems that can operate autonomously or while connected to the main grid, pose unique challenges for protection schemes. Traditional protection methods, such as time-delayed overcurrent relays, reclosers, and fuse-based protection may not be sufficient to detect faults in microgrids. This paper discusses the differences in protection requirements between autonomous and grid-connected microgrids, a comparison of overcurrent and differential protection schemes, and the advancements in microgrid communication, cybersecurity, standards, and test beds. A benchmark 4-bus microgrid system is implemented in distribution voltage ratings, with simulation results demonstrating the effectiveness of synchrophasor-based relays in detecting faults. Showing the feasibility of differential protection over overcurrent protection. Paper is concluding with future work needed to enhance the novel protection concepts.
Description
Citation
Extent
9 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 57th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Catalog Record
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.
