Exploring study profiles of Computer Science students with Social Network Analysis
Loading...
Files
Date
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Interviewee
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Information technology is widely adapted in all levels of education. The extensive information resources facilitate enhanced human capacity and the social environment to support learning. In particular, Social Network Analysis (SNA) has been broadly used in teaching and learning practices. In this paper, we perform community detection analysis to identify the learning behavior profiles of undergraduate computer science students in a Nordic university. The social network was created using 273 responses to an online survey. The students themselves provided their social connections at the university, and node attributes were created based on responses to questions regarding Educational Values, Goals Orientation, Self-efficacy, and the university teaching methods. We analyze the biggest communities to identify the factors that characterize the learning strategy and preferences of undergraduate computer science students.
Description
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Catalog Record
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.
