Impact Impacts On The Moon, Mercury, And Europa

Date

2020

Contributor

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

University of Hawaii at Manoa

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

In this work, I reconstitute and improve upon an Apollo-era statistical model of impact gardening (Gault et al. 1974) and validate the model against the gardening implied by remote sensing and analysis of Apollo cores. My major contribution is the modeling and analysis of the influence of secondary crater-forming impacts, which dominate impact gardening. Secondary craters are formed when debris that has been launched by the collision of an object from space with the surface of a body falls back onto the surface with sufficient energy to produce a crater. Interest in secondary craters and their importance in the evolution of the surfaces of Solar System bodies was re-inspired by a study of the secondary craters of Mars’ Zunil crater (McEwen et al. 2005), which shocked many in the cratering community for being so large, far-flung, and numerous. Similarly, studies of Jupiter’s icy moon Europa’s surface showed that most craters that are < 1 km in diameter are secondary craters (Birehaus et al. 2001; 2005). Secondary impacts appear to be significant drivers of changes at the uppermost surface on bodies across the solar system. I apply my model of impact gardening due to secondary impacts to explore the implications of impact gardening on the Moon, Mercury, and Europa, with a specific interest in the implications of impact gardening on the distribution and evolution of water ice resources in the solar system.

Description

Keywords

Planetology

Citation

Extent

Format

Geographic Location

Time Period

Related To

Related To (URI)

Table of Contents

Rights

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.