Big Data and Evidence-Driven Decision-Making: Analyzing the Practices of Large and Mid-Sized U.S. Cities

Date
2017-01-04
Authors
Ho, Alfred
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
With the growing ease of collecting, transmitting, storing, processing, and analyzing massive amounts of data, Big Data has caught the attention of local officials in recent years. Based on a multi-layered institutional theories and an extensive analysis of the 30 largest cities and 35 selected mid-sized cities in the U.S, this study examines how U.S. cities are using mobile phone apps, sensors, data analytics, and open data portals to pursue Big Data opportunities, and what institutional factors influence their choices. The results show three distinct clusters of data practices among the selected 65 cities. Socio-demographics, cultural institutions, professional networks, and an internal data-driven culture as indicated by the use of performance budgeting are significantly associated with more extensive Big Data initiatives. The paper concludes by discussing the implications for Big Data practices and the theoretical development of e-government research.
Description
Keywords
Big Data, institutional theories, institutional logics, isomorphism.
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 50th Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.