Belyi Maps and Bicritical Polynomials
Belyi Maps and Bicritical Polynomials
dc.contributor.advisor | Manes, Michelle | |
dc.contributor.author | Tobin, Isabella Olympia | |
dc.contributor.department | Mathematics | |
dc.date.accessioned | 2019-10-09T18:54:49Z | |
dc.date.available | 2019-10-09T18:54:49Z | |
dc.date.issued | 2019 | |
dc.description.degree | Ph.D. | |
dc.identifier.uri | http://hdl.handle.net/10125/63502 | |
dc.subject | Mathematics | |
dc.subject | Arithmetic Dynamics | |
dc.subject | Number Theory | |
dc.title | Belyi Maps and Bicritical Polynomials | |
dc.type | Thesis | |
dcterms.abstract | Let $K$ be a number field. We will show that any bicritical polynomial $f(z) \in K[z]$ is conjugate to a polynomial of the form $a\mathcal{B}_{d,k}(z) +c \in \bar{K}[z]$ where $\mathcal{B}_{d,k}(z)$ is a normalized single-cycle Belyi map with combinatorial type $(d; d-k, k+1, d)$. We use results of Ingram \cite{ingram2010} to determine height bounds on pairs $(a,c)$ such that $a\mathcal{B}_{d,k}(z) +c$ is post-critically finite. Using these height bounds, we completely describe the set of post-critically finite cubic polynomials of the form $a\mathcal{B}_{d,k}(z)+c \in \mathbb{Q}[z]$, up to conjugacy over $\mathbb{Q}$. We give partial results for post-critically finite polynomials over $\mathbb{Q}$ of arbitrary degree $d>3$. | |
dcterms.extent | 65 pages | |
dcterms.language | eng | |
dcterms.publisher | University of Hawai'i at Manoa | |
dcterms.type | Text | |
local.identifier.alturi | http://dissertations.umi.com/hawii:10389 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Tobin_hawii_0085A_10389.pdf
- Size:
- 865.33 KB
- Format:
- Adobe Portable Document Format
- Description: