Impacts of Machine Learning on Work
Impacts of Machine Learning on Work
Files
Date
2019-01-08
Authors
Crowston, Kevin
Bolici, Francesco
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The increased pervasiveness of technological advancements in automation makes it urgent to address the question of how work is changing in response. Focusing on applications of machine learning (ML) that automate information tasks, we present a simple framework for identifying the impacts of an automated system on a task. From an analysis of popular press articles about ML, we develop 3 patterns for the use of ML—decision support, blended decision making and complete automation—with implications for the kinds of tasks and systems. We further consider how automation of one task might have implications for other interdependent tasks. Our main conclusion is that designers have a range of options for systems and that automation of tasks is not the same as automation of work.
Description
Keywords
Digital Innovation,
Organizational Systems and Technology,
artificial intelligence, automation, machine learning, work design
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 52nd Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.