Usage Space Sampling for Fringe Customer Identification

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

1748

Ending Page

Alternative Title

Abstract

With large numbers of available customers, it is often essential to select representative samples for reasons of computational cost reduction and upstream advanced data analytics. However, for many analytical procedures, the usage behavior observed from a smaller sample of customers must indicate well the fringe of usage and its relation to extreme product loads. Due to the high complexity of technical or service systems, it remains challenging to minimize the number of samples while sufficiently capturing the fringe customers. With the availability of data related to usage behavior, we consider a sampling method to address this problem by analyzing the customer usage space before sampling, then separately sampling fringe and core customers, and weighting the samples afterwards. Experimental results show that the method can identify fringe customers with significantly fewer, yet reproducible samples, while maintaining the distribution representativeness of customer population to a large extend.

Description

Keywords

Service Analytics, convex hull, fringe customer, sampling, service analytics, usage space

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.