Advances in Automated Generation of Convolutional Neural Networks from Synthetic Data in Industrial Environments

Loading...
Thumbnail Image

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Interviewee

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

The usage of convolutional neural networks has revolutionized data processing and its application in the industry during the last few years. Especially detection in images, a historically hard task to automate is now available on every smart phone. Nonetheless, this technology has not yet spread in the industry of car production, where lots of visual tests and quality checks are still performed manually. Even though the vision capabilities convolutional neural networks can give machines are already respectable, they still need well prepared training data that is costly and time-consuming to produce. This paper describes our effort to test and improve a system to automatically synthesize training images. This existing system renders computer aided design models into scenes and out of that produces realistic images and corresponding labels. Two new models, Single Shot Detector and RetinaNet are retrained under the use of distractors and then tested against each other. The better performing RetinaNet is then tested for performance under training with a variety of datasets from different domains in order to observe the models strength and weakness under domain shifts. These domains are real photographs, rendered models and images of objects cut and pasted into different backgrounds. The results show that the model trained with a mixture of all domains performs best.

Description

Citation

Extent

7 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Catalog Record

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.