Starling: A Blockchain-based System for Coordinated Obstacle Mapping in Dynamic Vehicular Environments

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Current Vehicle-to-Vehicle solutions cannot ensure the authenticity of safety-critical vehicle and traffic data. Moreover, they do not allow malicious vehicles to be detected and eliminated. However, this is becoming mandatory, as more and more vehicles are on the road and communicating with each other. We propose a system called Starling, which focuses on trusted coordinated obstacle mapping using blockchain technology and a distributed database. Starling enables vehicles to share detected obstacles with other vehicles in a secure and verifiable manner, thus improving road safety. It ensures that data was not manipulated, changed, or deleted and is based on an open protocol so that vehicles can exchange data regardless of their manufacturer. In a case study, we demonstrate how a consensus is reached among vehicles and conduct a comprehensive evaluation of the Starling system using Ethereum and the InterPlanetary File System.

Description

Keywords

Distributed Ledger Technology, The Blockchain, blockchain technology, coordinated obstacle mapping, distributed databases, ipfs, v2v communication

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.