Can I See Beyond What You See? Blending Machine Learning and Econometrics to Discover Household TV Viewing Preferences

Date

2017-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This article discusses the emergence of a computational social science analytics fusion as a mainstream scientific approach involving machine-based methods and explanatory empiricism as a basis for the discovery of new policy-related insights for business, consumer and social settings. It reflects the interdisciplinary background of the new approaches that the Hawaii International Conference on Systems Science has embraced over the years, and especially some of the recent development and shifts in the scientific study of technology-related phenomena. It also has evoked new forms of research inquiry, blended approaches to research methodology, and more pointed interest in the production of research results that have direct application in various industry contexts. We review background knowledge to showcase the methods shifts, and demonstrate the new forms of research, by showcasing contemporary applications that will be interesting to the audience on the occasion of the HICSS 50th anniversary.

Description

Keywords

Data analytics, econometrics, household preferences, latent Dirichlet allocation, TV viewing preferences

Citation

Extent

6 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 50th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.