Unsupervised Content-Based Characterization and Anomaly Detection of Online Community Dynamics

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

The structure and behavior of human networks have been investigated and quantitatively modeled by modern social scientists for decades, however the scope of these efforts is often constrained by the labor-intensive curation processes that are required to collect, organize, and analyze network data. The surge in online social media in recent years provides a new source of dynamic, semi-structured data of digital human networks, many of which embody attributes of real-world networks. In this paper we leverage the Reddit social media platform to study social communities whose dynamics indicate they may have experienced a disturbance event. We describe an unsupervised approach to analyzing natural language content for quantifying community similarity, monitoring temporal changes, and detecting anomalies indicative of disturbance events. We demonstrate how this method is able to detect anomalies in a spectrum of Reddit communities and discuss its applicability to unsupervised event detection for a broader class of social media use cases.

Description

Keywords

Data Analytics, Data Mining and Machine Learning for Social Media, Digital and Social Media, social networks, anomaly detection, event detection, network characterization

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.