Enhancing Scientific Collaboration Through Knowledge Base Population and Linking for Meetings
Date
2018-01-03
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Recent research on scientific collaboration shows that distributed interdisciplinary collaborations report comparatively poor outcomes, and the inefficiency of the coordination mechanisms is partially responsible for the problems. To improve in-formation sharing between past collaborators and future team members, or reuse of collaboration records from one project by future researchers, this pa-per describes systems that automatically construct a knowledge base of the meetings from the calendars of participants, and that then link reference to those meetings found in email messages to the correspond-ing meeting in the knowledge base. This is work in progress in which experiments with a publicly avail-able corporate email collection with calendar entries show that the knowledge base population function achieves high precision (0.98, meaning that almost all knowledge base entities are actually meetings) and that the accuracy of the linking from email messages to knowledge base entries (0.90) is already quite good.
Description
Keywords
Text Mining in Big Data Analytics, Avocado email collection, meeting linking, Scientific collaboration
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 51st Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.