Rapid Selection of Machine Learning Models Using Greedy Cross Validation
Files
Date
2022-01-04
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
This paper introduces a greedy method of performing k-fold cross validation and shows how the proposed greedy method can be used to rapidly identify optimal or near-optimal machine learning (ML) models. Although many methods have been proposed that apply metaheuristic and other search methods to the hyperparameter space as a means of accelerating ML model selection, the cross-validation process itself has been overlooked as a means of rapidly identifying optimal ML models. The current study remedies this oversight by describing a simple, greedy cross validation algorithm and demonstrating that even in its simplest form, the greedy cross validation method can vastly reduce the average time required to identify an optimal or near-optimal ML model within a large set of candidate models. This substantially reduced search time is shown to hold across a variety of different ML algorithms and real-world datasets.
Description
Keywords
Computational Intelligence and State-of-the-Art Data Analytics, greedy cross validation, hyperparameter optimization, machine learning, model selection
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.