A Signal Detection Theory Approach to Predicting Immunity to Pandemic Vaccine Fake News

Loading...
Thumbnail Image

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Interviewee

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

1808

Ending Page

Alternative Title

Abstract

Managing a contagious disease pandemic, such as COVID-19, requires that the public understand and cooperate with behavioral guidelines to reduce viral transmission. This research uses Signal Detection Theory (SDT) to explore how U.S. adults distinguish between true and false information related to COVID-19 vaccines. A total of 372 U.S. adults categorized 17 true and 17 false COVID-19 vaccine headlines. Item Response Theory analyses suggest that the ability to identify true information about the pandemic is a construct that can be reliably measured with our novel methodology. Signal Detection Theory analyses indicate high accuracy (AUC = 0.861), with no bias favoring either true or false responses. Overall, U.S. adults correctly classified 7 of 10 true and 8 of 10 false headlines. Multiple regression analyses on individual performance metrics reveal substantially lower accuracy among conservatives and those with lower scores on a measure of Actively Open-minded Thinking. Implications and limitations of these findings within the pandemic news context are discussed.

Description

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Catalog Record

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.