Detecting and Understanding Textual Deepfakes in Online Reviews

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Deepfakes endanger business and society. Regarding fraudulent texts created with deep learning techniques, this may become particularly evident for online reviews. Here, customers naturally rely on truthful information about a product or service to adequately evaluate its worthiness. However, in the light of the proliferation of deepfakes, customers may increasingly harbour distrust and thereby affect a retailers business. To counteract this, we propose a novel IT artifact capable of detecting textual deepfakes to then explain their peculiarities by using explainable artificial intelligence. Finally, we demonstrate the utility of such explanations for the case of online reviews in e-commerce.

Description

Keywords

Explainable Artificial Intelligence (XAI), deep fake detection, deep learning, fraud detection, online reviews, synthetic data

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.