Context Map Analysis of Fake News in Social Media: A Contextualized Visualization Approach
Files
Date
2020-01-07
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Visualization tools in text analytics are typically based on content analysis, using $n$-gram frequencies or topic models which output commonly used words, phrases, or topics in a text corpus. However, the interpretation of these visual output and summary labels can be incomplete or misleading when words or phrases are taken out of context. We use a novel Context Map approach to create a connected network of $n$-grams by considering the frequency in which they are used together in the same context. We combine network optimization techniques with embedded representation models to generate an visualization interface with clearer and more accurate interpretation potential. In this paper, we apply our Context Map method to analyze fake news in social media. We compare news article veracity (true versus false news) with orientation (left, mainstream, or right). Our approach provides a rich context analysis of the language used in true versus fake news.
Description
Keywords
Data Analytics, Data Mining and Machine Learning for Social Media, context map, fake news, visualization
Citation
Extent
9 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.