A-T-menability of groups

Date

2011

Contributor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

University of Hawaii at Manoa

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This paper presents a detailed study of a-T-menable discrete groups. Starting with several conditions required for a-T-menability, we prove that they are equivalent and hence charaterize a class of a-T-menable discrete groups. We then show that the free groups on two generators is a-T-menable. Using the infnite cyclic group, we succesfully draw a rigid connection –from the perspective of affine isometric actions –between amenable groups and a-T-menable groups. We also prove that the quotient of an a-T-menable group by a finite normal subgroup is a-T-menable. We conclude with a new proof that the free product of two a-T-menable groups is a-T-menable.

Description

Plan B paper, M.A., Mathematics, University of Hawaii at Manoa, 2011

Keywords

Citation

Extent

32 pages

Format

Geographic Location

Time Period

Related To

Related To (URI)

Table of Contents

Rights

All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.