A Novel Personalized Academic Knowledge Sharing System in Online Social Network

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Information overload is a major problem for both readers and authors due to the rapid increase in scientific papers in recent years. Methods are proposed to help readers find right papers, but few research focuses on knowledge sharing and dissemination from authors’ perspectives. This paper proposes a personalized academic knowledge sharing system that takes advantages of author’s initiatives. In our method, we combine the user-level and document-level analysis in the same model, it works in two stages: 1) user-level analysis, which is used to profile users in three dimensions (i.e., research topic relevance, social relation and research quality); and 2) document-level analysis, which calculates the similarity between the target article and reader’s publications. The proposed method has been implemented in the ScholarMate, which is a popular academic social network. The experiment results show that the proposed method can effectively promote the academic knowledge sharing, it outperforms other baseline methods.

Description

Keywords

Decision Support for Smart Cities, Academic social network, Knowledge sharing, Recommender systems

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.