Spatial Variability of Sea Level Rise Due to Water Impoundment Behind Dams

Loading...
Thumbnail Image

Date

Contributor

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Interviewee

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Dams have impounded ~10,800 km3 of water since 1900, reducing global sea level by ~30.0 mm and decreasing the rate of sea level rise. The load from impounded water depresses the earth’s surface near dams and elevates the geoid, which locally increases relative sea level (RSL). We computed patterns of dam-induced RSL change globally, and estimated that tide gauges, which are often close to dams, recorded only ~60% of the global average sea level drop due to reservoir building. Thus, RSL in the globally averaged ocean rose ~0.2 mm/yr more slowly than has been recorded by tide gauges, or ~10% slower than the measured rise rate of 1.5-2.0 mm/yr. Relative proximity to dams caused RSL to rise fastest in northeastern North America and slowest in the Pacific. This dam-induced spatial variability may mask the sea level “fingerprint” of melting sources, especially northern (Greenland) sources of glacial unloading.

Description

Keywords

Citation

DOI

Extent

43 pages

Format

Geographic Location

Time Period

Related To

Related To (URI)

Table of Contents

Rights

All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.

Rights Holder

Catalog Record

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.