Non-Exhaustive, Overlapping k-medoids for Document Clustering
Files
Date
2020-01-07
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Manual document categorization is time consuming, expensive, and difficult to manage for large collections. Unsupervised clustering algorithms perform well when documents belong to only one group. However, individual documents may be outliers or span multiple topics. This paper proposes a new clustering algorithm called non-exhaustive overlapping k-medoids inspired by k-medoids and non-exhaustive overlapping k-means. The proposed algorithm partitions a set of objects into k clusters based on pairwise similarity. Each object is assigned to zero, one, or many groups to emulate manual results. The algorithm uses dissimilarity instead of distance measures and applies to text and other abstract data. Neo-k-medoids is tested against manually tagged movie descriptions and Wikipedia comments. Initial results are primarily poor but show promise. Future research is described to improve the proposed algorithm and explore alternate evaluation measures.
Description
Keywords
Text Analytics, disjunctive, document clustering, outlier detection, overlapping
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.