Uncoupling inequality: Reflections on the ethics of benchmarks for digital media

Date

2022-01-04

Authors

Washington, Anne
Rhue, Lauren A.
Nakamura, Lisa
Stevens, Robin

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Our collaboration seeks to demonstrate shared interrogation by exploring the ethics of machine learning benchmarks from a socio-technical management perspective with insight from public health and ethnic studies. Benchmarks, such as ImageNet, are annotated open data sets for training algorithms. The COVID-19 pandemic reinforced the practical need for ethical information infrastructures to analyze digital and social media, especially related to medicine and race. Social media analysis that obscures Black teen mental health and ignores anti-Asian hate fails as information infrastructure. Despite inadequately handling non-dominant voices, machine learning benchmarks are the basis for analysis in operational systems. Turning to the management literature, we interrogate cross-cutting problems of benchmarks through the lens of coupling, or mutual interdependence between people, technologies, and environments. Uncoupling inequality from machine learning benchmarks may require conceptualizing the social dependencies that build structural barriers to inclusion.

Description

Keywords

Critical and Ethical Studies of Digital and Social Media, benchmarks, ethics, failure, inequality, machine learning, tight-coupling

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.