Informing Acceptability and Feasibility of Digital Phenotyping for Personalized HIV Prevention among Marginalized Populations Presenting to the Emergency Department

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3192

Ending Page

Alternative Title

Abstract

For marginalized populations with ongoing HIV epidemics, alternative methods are needed for understanding the complexities of HIV risk and delivering prevention interventions. Due to lack of engagement in ambulatory care, such groups have high utilization of drop-in care. Therefore, emergency departments represent a location with those at highest risk for HIV and in highest need of novel prevention methods. Digital phenotyping via data collected from smartphones and other wearable sensors could provide the innovative vehicle for examining complex HIV risk and assist in delivering personalized prevention interventions. However, there is paucity in exploring if such methods are an option. This study aimed to fill this gap via a cross-sectional psychosocial assessment with a sample of N=85 emergency department patients with HIV risk. Findings demonstrate that although potentially feasible, acceptability of digital phenotyping is questionable. Technology-assisted HIV prevention needs to be designed with the target community and address key ethical considerations.

Description

Keywords

Body Sensor Networks for Personalized Medicine, digital phenotyping, equity, health disparities, hiv, wearable sensors

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.