Demand Prediction by Incorporating Internet-of-Things Data: A Case of Automobile Repair and Maintenance Service

Loading...
Thumbnail Image

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Interviewee

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

5017

Ending Page

Alternative Title

Abstract

While anecdotal evidence highlights the value of Internet-of-Things (IoT) data for business operations, rigorous empirical validation is still limited. The key challenge lies in integrating IoT analytics into business evaluation. To address the issues, we focus on the automotive industry and study the value of telematics data, an important IoT application in this domain, in terms of predicting maintenance, repair, and operations (MRO) service demands. Our approach involves building a prediction system with users’ driving behavior, MRO service records, and environmental data (weather and traffic). We show a substantial improvement in prediction performance upon incorporating user behavior information derived from IoT data. Specifically, we find that hard acceleration, hard braking, and speeding rank the third, fifth, and sixth, respectively, in terms of their contribution to the MRO prediction. Our results shed light on the design of product-service systems (PSS), an emerging trend to integrate product offerings with service offerings.

Description

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Catalog Record

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.