Detecting Concept Drift with Neural Network Model Uncertainty

Date
2023-01-03
Authors
Baier, Lucas
Schlör, Tim
Schoeffer, Jakob
Kühl, Niklas
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
835
Ending Page
Alternative Title
Abstract
Deployed machine learning models are confronted with the problem of changing data over time, a phenomenon also called concept drift. While existing approaches of concept drift detection already show convincing results, they require true labels as a prerequisite for successful drift detection. Especially in many real-world application scenarios—like the ones covered in this work—true labels are scarce, and their acquisition is expensive. Therefore, we introduce a new algorithm for drift detection, Uncertainty Drift Detection (UDD), which is able to detect drifts without access to true labels. Our approach is based on the uncertainty estimates provided by a deep neural network in combination with Monte Carlo Dropout. Structural changes over time are detected by applying the ADWIN technique on the uncertainty estimates, and detected drifts trigger a retraining of the prediction model. In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model rather than detecting change on the input data only (which can lead to unnecessary retrainings). We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.
Description
Keywords
Big Data and Analytics: Pathways to Maturity, concept drift detection, data stream, monte carlo dropout, no labels, uncertainty
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.