Predicting Students’ College Drop Out and Departure Decisions by Analyzing their Campus-Based Social Network Text Messages

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Undergraduate student retention is a key concern in the US higher education system. Having a scientific method for predicting undergraduate student departure would enable institutions to deploy targeted interventions with the goal of retaining a particular student who is at risk of dropping out. We explore the use of Latent Dirichlet Allocation (LDA), Systemic Functional Linguistics (SFL), and new techniques for Social Network Analytics addressing student communications within a novel campus-based closed social networking platform. Our research results indicate that students who were ultimately retained sent three times as many messages than those who were not, and analyzing the patterns of use of the closed social network in an academic setting reliably predicts undergraduate student dropouts and leads to a more effective deployment of retention resources over time.

Description

Keywords

Analyzing the Impact of Digitization on Business Operations, sentiment analysis, social networks, universities

Citation

Extent

7 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.