High-Performance Fake Voice Detection on Automatic Speaker Verification Systems for the Prevention of Cyber Fraud with Convolutional Neural Networks

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This study proposes a highly effective data analytics approach to prevent cyber fraud on automatic speaker verification systems by classifying histograms of genuine and spoofed voice recordings. Our deep learning-based lightweight architecture advances the application of fake voice detection on embedded systems. It sets a new benchmark with a balanced accuracy of 95.64% and an equal error rate of 4.43%, contributing to adopting artificial intelligence technologies in organizational systems and technologies. As fake voice-related fraud causes monetary damage and serious privacy concerns for various applications, our approach improves the security of such services, being of high practical relevance. Furthermore, the post-hoc analysis of our results reveals that our model confirms image texture analysis-related findings of prior studies and discovers further voice signal features (i.e., textural and contextual) that can advance future work in this field.

Description

Keywords

Data Analytics, Control Systems, Business Strategies, cyber fraud, data analytics, deep learning, fake voice, organizations

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.