Safe Control of Grid-Interfacing Inverters with Current Magnitude Limits
Loading...
Files
Date
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Interviewee
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
3004
Ending Page
Alternative Title
Abstract
Grid-interfacing inverters allow renewable resources to be connected to the electric grid and offer fast and programmable control responses. However, inverters are subject to significant physical constraints. One such constraint is a current magnitude limit required to protect semiconductor devices. While many current limiting methods are available, they can often unpredictably alter the behavior of the inverter control during overcurrent events leading to instability or poor performance. In this paper, we present a safety filter approach to limit the current magnitude of inverters controlled as voltage sources. The safety filter problem is formulated with a control barrier function constraint that encodes the current magnitude limit. To ensure feasibility of the problem, we prove the existence of a safe linear controller for a specified reference. This approach allows for the desired voltage source behavior to be minimally altered while safely limiting the current output.
Description
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 58th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Catalog Record
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.
