Towards Computational Assessment of Idea Novelty
Files
Date
2019-01-08
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
In crowdsourcing ideation websites, companies can easily collect large amount of ideas. Screening through such volume of ideas is very costly and challenging, necessitating automatic approaches. It would be particularly useful to automatically evaluate idea novelty since companies commonly seek novel ideas. Three computational approaches were tested, based on Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA) and term frequency–inverse document frequency (TF-IDF), respectively. These three approaches were used on three set of ideas and the computed idea novelty was compared with human expert evaluation. TF-IDF based measure correlated better with expert evaluation than the other two measures. However, our results show that these approaches do not match human judgement well enough to replace it.
Description
Keywords
Text Mining in Big Data Analytics, Collaboration Systems and Technologies, Computational methods, Creativity, Crowdsourcing, Idea evaluation, Topic modeling
Citation
Extent
9 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 52nd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.