Function approximation using neural networks: a simulation study

Date

1992

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

University of Hawaii at Manoa

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This dissertation analyzes the effect of different characteristics of data on the training and estimation accuracy of neural networks. The literature on the universal approximation property of neural networks is reviewed. An examination of the relationship of the neural network approach to traditional statistical methods of approximation brought about proposed enhancements to the neural network training procedure. The study generated data samples characterized by different functional forms, levels of random noise, number and magnitude of outliers, and strength of multicollinearity. These samples were then used to train a neural network. The accuracy of the neural network estimate was tested and compared with the accuracy of the estimates obtained from the true model and those from Specht's GRNN model. Statistics on the length of training and the complexity of the neural network estimate were also collected and analyzed.

Description

Keywords

Citation

Extent

Format

Geographic Location

Time Period

Related To

Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Communication and Information Sciences; no. 2782

Related To (URI)

Table of Contents

Rights

All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.