To Design and Implement a Recommender System based on Brainwave: Applying Empirical Model Decomposition (EMD) and Neural Networks

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Recommender systems collect and analyze users’ preferences to help users overcome information overload and make their decisions. In this research, we develop an online book recommender system based on users’ brainwave information. We collect users’ brainwave data by utilizing electroencephalography (EEG) device and apply empirical mode decomposition (EMD) to decompose the brainwave signals into intrinsic mode functions (IMFs). We propose a back-propagation neural networks (BPNN) model to portrait the user’s brainwave preference correlations based on IMFs of brainwave signals, thereby designing and developing the book recommender system. The experimental results show that the recommender system combined with the brainwave analysis can improve accuracy significantly. This research has highlighted a future direction for research and development on human-computer interaction (HCI) design and recommender system.

Description

Keywords

Cognitive Neuroscience and Psychophysiology in the Digital Economy, Internet and the Digital Economy, Recommender system, brainwave analysis, empirical mode decomposition (EMD), neural networks

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.