Observations of supergradient winds in the tropical cyclone boundary layer
Date
2014-08
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
University of Hawaii at Manoa
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Secondary eyewall formation (SEF) impacts tropical cyclone (TC) intensity and structure, but the inner core dynamics of this phenomenon are not well understood. Numerical models suggest that a supergradient jet at the top of the TC boundary layer (TCBL) associated with boundary layer convergence and forcing of deep convection may play a critical role in SEF. There is a lack of consensus on the importance and magnitude of supergradient jets, due in part to limited high-resolution observations near the surface. A new spline-based, 3D variational analysis technique called Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) is used to combine airborne Doppler radar, GPS dropwindsonde, and in situ flight level observations to estimate the magnitude of the supergradient wind (SGW). A detailed error analysis is presented for wind, pressure gradient, and SGW retrievals using synthetic observations in the primary eyewall of a Weather Research and Forecasting Model (WRF) simulated Hurricane Rita (2005). The new methodology is then used to examine the SGW in the primary and secondary eyewalls of the real Hurricane Rita on 22 September. Hurricane Rainband and Intensity Change Experiment (RAINEX) field campaign observations from two aircraft are used to estimate the magnitude of the SGW for the northern quadrant of the TC and for the azimuthal average. Results from the simulated primary eyewall show the methodology is successful at retrieving the tangential and radial wind fields with low errors. The pressure gradient field has a higher error, especially when dropsondes were included in the analysis. The resulting SGW magnitudes are negatively affected by the pressure gradient errors, resulting in unrealistic supergradient maxima near the surface. The root mean square error in the retrieved SGW is ~5 m s-1, consistent with an analytic error analysis. The results from the real observations provide new estimates of the magnitude of SGW in mature primary and secondary eyewalls. The primary eyewall was found to have a SGW maximum of 22 m s-1 and the secondary eyewall was found to have a SGW maximum of 16 m s-1 for the axisymmetric analysis. The new methodology shows promise to estimate SGW and quantify its importance in TCBL dynamics and SEF, but additional error analysis is necessary to refine the estimates.
Description
Keywords
Secondary eyewall formation
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Master of Science (University of Hawaii at Manoa). Meteorology.
Related To (URI)
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.