Accounting method selection using neural networks and multi-criteria decision making

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

1550

Ending Page

Alternative Title

Abstract

The selection of accounting methods has significant impacts on companies’ accounting results and strategic goals. However, this selection problem has not been effectively addressed by existing studies. To fill this important gap, we propose a novel approach for evaluating two accounting method alternatives, namely Full Cost (FC) and Successful Effort (SE) with an empirical case of an oil and gas company. Neural networks (NNs), fuzzy multi-criteria decision making (MCDM) with optimal weighting are applied to evaluate the consequent effects of FC and SE on strategic goals of the case company. The empirical study conducted demonstrates the effectiveness of the proposed approach. Methodologically, this paper provides a structured approach for evaluating accounting method alternatives in a rational and informed manner. Empirically, the evidence obtained from applying the proposed approach can be used to support the case company’s decision on accounting method selection.

Description

Keywords

Machine Learning and Predictive Analytics in Accounting, Finance, and Management, accounting method, accounting results, company strategic goals, multi-critiera decision making, neural networks

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.